From 1 - 10 / 192
  • The 2002 report to the Council of Australian Governments (COAG) <i>Natural disasters in Australia: Reforming mitigation, relief and recovery arrangements</i> advocated a 'fundamental shift in focus towards cost-effective, evidence-based disaster mitigation'. The report stated that in Australia there was a 'lack of independent and comprehensive systematic natural disaster risk assessments, and natural disaster data and analysis'. One key solution proposed to address this gap in our knowledge is outlined in Reform Commitment 1 in the report: <i>Develop and implement a five-year national programme of systematic and rigorous disaster risk assessments</i>. This framework is designed to improve our collective knowledge about natural hazard risk in Australia to support emergency risk management and natural hazard mitigation. The natural hazards covered are those defined in the report to COAG: bushfire, earthquake, flood, storm, cyclone, storm surge, landslide, tsunami, meteorite strike and tornado. Many events have demonstrated that the importance of natural hazards does not lie simply in the generation and passage of events such as severe storms or floods, but in the wide-reaching and profound impacts that these events can have on communities. Risk 1 is defined as: A concept to describe the likelihood of harmful consequences arising from the interaction of hazards, communities and the environment. This framework focuses on risk assessment for sudden onset natural hazards to underpin natural hazard risk management and natural hazard mitigation. The framework does not focus on risk management or mitigation, although its outcomes support and benefit these. The framework covers the following risks arising from natural hazards: financial, socio-economic, casualty, political and environmental risk. Each of these risks contributes to the overall impacts of natural hazards on communities . This framework is aimed foremost at those who seek an improved evidence base for risk management of natural hazards, in all levels of government. The framework is also intended for risk assessment practitioners, researchers and information managers. The primary driver of the framework is the need to develop an improved evidence base for effective risk management decisions on natural hazards. Developing this improved evidence base will also deliver on COAG Reform Commitment 1. Other key drivers include: - Cooperative approaches across all levels of government to managing natural hazards; - A consistent approach to natural hazard risk assessment; - Risk management for cross-jurisdictional and catastrophic disasters; - The potential impacts of climate change from possible changes in the frequency or severity of weather related natural hazards; - Increasing exposure of populations to natural hazards through demographic change and increases in personal assets.

  • A review of the methods employed to collect 'buildings specific field data' following the impact of Tropical Cyclone Larry (March 2006) resulted in a plan to build a vehicular mounted rapid data inventory collection system to compliment post disaster surveys. The system assists to overcome issues related to restricted access, poor weather and difficult working conditions. The ability to quickly collect comprehensive information that is highly critical for both damage assessment and vulnerability model validation reduces assessment errors caused by rapid clearing of debris and repairs following the disaster, along with the use of tarpaulins which often obscure the level of damage viewed from the street. RICS consists of four 5-Megapixel Ethernet cameras attached to a tripod mounted on a vehicle, a GPS device and software written in C++. The images are compressed in jpeg format 'on-the-fly' and displayed in a Graphical User Interface (GUI) along with GPS location, bearing and speed. An additional display window shows the street-directory (UBD) roadmap and a GPS tracklog. Hot keys for instant damage assessment marking location and damage levels have been programed into the GUI. All images are geo-referenced and stored in a database.

  • Climate change is expected to increase severe wind hazard in many regions of the Australian continent with consequences for exposed infrastructure and human populations. The objective of this paper is to provide an initial nationally consistent assessment of wind risk under current climate, utilizing the Australian/New Zealand wind loading standard (AS/NZS 1170.2, 2002) as a measure of the hazard. This work is part of the National Wind Risk Assessment (NWRA), which is a collaboration between the Australian Federal Government (Department of Climate Change and Energy Efficiency) and Geoscience Australia. It is aimed at highlighting regions of the Australian continent where there is high wind risk to residential structures under current climate, and where, if hazard increases under climate change, there will be a greater need for adaptation. This assessment is being undertaken by separately considering wind hazard, infrastructure exposure and the wind vulnerability of residential buildings. The NWRA will provide a benchmark measure of wind risk nationally (current climate), underpinned by the National Exposure Information System (NEXIS; developed by Geoscience Australia) and the wind loading standard. The methodology which determines the direct impact of severe wind on Australian communities involves the parallel development of the understanding of wind hazard, residential building exposure and the wind vulnerability of residential structures. We provide the current climate wind risk, expressed as annualized loss, based on the wind loading standard.

  • A study of the consistency of gust wind speed records from two types of recording instruments has been undertaken. The study examined the Bureau of Meteorology's (BoM) wind speed records in order to establish the existence of bias between coincident records obtained by the old pressure-tube Dines anemometers and the records obtained by the new cup anemometers. This study was an important step towards assessing the quality and consistency of gust wind speed records that form the basis of the Australian Standards/NZ Standards for design of buildings for wind actions (AS/NZS 1170.2:2011 and AS 4055:2006). The Building Code of Australia (BCA) requires that buildings in Australia meet the specifications described in the two standards. BoM has been recording peak gust wind speed observations in the Australian region for over 70 years. The Australia/New Zealand Wind Actions Standard as well as the wind engineering community in general rely on these peak gust wind speed observations to determine wind loads on buildings and infrastructure. In the mid-1980s BoM commenced a program to replace the aging Dines anemometers with Synchrotac and Almos cup anemometers. During the anemometer replacement procedure, many localities had both types of anemometers recording extreme events. This allowed us to compare severe wind recordings of both instruments to assess the consistency of the recordings. The results show that the Dines anemometer measures higher gust wind speeds than the 3-cup anemometer when the same wind gust is considered. The bias varies with the wind speed and ranges from 5 to 17%. This poster presents the methodology and main outcomes from the assessment of coincident measurements of gust wind speed.

  • The Australian National Coastal Vulnerability Assessment (NCVA) was commissioned by the Federal Government to assess the risk to coastal communities from climate related hazards. In addition to an understanding of the impact/risk posed by the current climate, the study also examined the change in risk under a range of future climate scenarios. This assessment will provide information for application to policy decisions for, inter alia, land use, building codes, emergency management and insurance applications. Geoscience Australia coordinated the work undertaken to quantify the impact on property and infrastructure. This included the development of SMARTLINE, a nationally-consistent database of coastal morphology for the entire country, which provides critical information on the geology and landforms and their potential susceptibility to instability or degradation due to environmental or climatic factors. In a first-order attempt to assess the climate-change induced hazard to the coastal landscape, SMARTLINE data have been combined with sea-level rise (SLR) projections for 2030 and 2100, and 1 in 100 year current-climate storm surge estimates to determine potential areas of inundation and zones of instability where coastal recession due to SLR is predicted. Additionally, cyclonic wind hazard along Australia's northern coastline has been estimated using Geoscience Australia's Tropical Cyclone Risk Model, utilising synthetic tropical cyclone event sets derived from IPCC AR4 global climate models. The hazard levels have been modified for terrain, topographic and shielding effects to reflect localised variations in wind hazard.

  • Severe wind damage accounts for about 40 percent of the total building damage observed in Australia during the 20th century. Climate change has the potential to significantly affect severe wind hazard and the resulting level of loss. W report on a nationally consistent assessment of severe wind hazard across the Australian continent, and also severe wind risk to residential houses (quantified in terms of annualised loss). A computational framework has been developed to quantify both the wind hazard and risk due to severe winds, based on innovative modeling techniques and application of the National Exposure Information System (NEXIS). A combination of tropical cyclone, synoptic and thunderstorm wind hazard estimates is used to provide a revised estimate of the severe wind hazard across Australia. The hazard modeling utilises both 'current climate' information and also simulations forced by IPCC SRES climate change scenarios (employed to estimate how the wind hazard may be influenced by climate change). Our analysis has identified regions where the design wind speed depicted in the Australian/New Zealand Wind Loading Standard (AS/NZS 1170.2, 2010) is lower than 'new' hazard analysis. In considering future climate scenarios, four case study regions are used to illustrate when the wind loading standard may be inadequate, and where retrofitting is indicated as a viable adaptation option at either the present or at a specified future time. The comparison of current and projected future risk, currently only considers direct costs (structural damage to houses) associated with severe wind hazard. A broader assessment methodology is discussed.

  • Cyclone Tracy is the only tropical cyclone to have devastated a major Australian population centre. Following the disaster (December 1974), the Australian Government implemented significantly improved building standards aimed at reducing the impact of a similar event in future. Geoscience Australia has developed models of severe wind risk for the Australian continent which utilise impact modelling, where we separately assess hazard, exposure and vulnerability in order to evaluate impact/damage. As often occurs in extreme natural disasters, meteorological instrumentation failed prior to the maximum wind gusts being recorded, so the spatial extent of the peak wind gusts were inferred from models constrained by estimates of the observed maximum peak wind gust. For this study, we utilise the wind vulnerability relationships determined in recent years for similar circa 1974 structures, and our knowledge of the type and specific location of structures at the time, to make the link between hazard and impact/damage. This spatial damage estimation (site specific values) is compared with the observed 1974 post-event survey damage in an effort to validate the model. As a result of Cyclone Tracy and the subsequent evacuation of 75% of the population, much more attention was given to building codes and other social aspects of disaster planning (i.e. tree planting). The likelihood of another severe cyclone impacting Darwin is real and on past experience likely within the next few decades. The study utilises both the exposure and vulnerability for 1974 and present-day residential building inventories, to evaluate the resulting effectiveness of the improved building codes. This provides a comparative impact assessment of the scenario were Cyclone Tracy to occur in the current cyclone season and evaluates the reduced vulnerability of the present building stock (compared to 1974). The study also assesses the effect that improved building standards have had on the Darwin community.

  • The tectonic origin, paleoearthquake histories and slip rates of six normal faults (referred to here as the Rahotu, Oaonui, Kina, Kiri, Ihaia and Pihama faults) have been examined for up to ~26 kyr within the Taranaki Rift, New Zealand. A minimum of 13 ground-surface rupturing paleoearthquakes have been recognised on four of the faults using analysis of displaced late Quaternary stratigraphy and landforms. These data, in combination with 21 new radiocarbon dates, constrain the timing, slip and magnitude of each earthquake. The faults have low throw rates (~0.1-0.8 mm/yr) and appear to be buried near the Mt Taranaki volcanic cone. Recurrence intervals between earthquakes on individual faults typically range from 3-10 kyr (average ~ 6 kyr), with slip/earthquake ranging from ~0.3-1.5 m (average ~0.7 m). Recurrence intervals and slip/earthquake typically vary by up to a factor of three on individual faults, with only the Oaonui Fault displaying near-characteristic slip (of about 0.5 m) during successive earthquakes. The timing and slip of earthquakes on individual faults appear to have been interdependent, with each event possibly relieving stress and decreasing the likelihood of additional earthquakes across the system. Earthquake magnitudes are estimated to be M 6.5-6.7. The dating resolution of paleoearthquakes is generally ±1-2 kyr and is presently too imprecise to test the temporal relations between seismic events and either volcanic eruptions or lahars formed by debris avalanches during cone collapse. It is unlikely, however, that formation of the ~7.8 kyr Opua Formation lahar was triggered by a large earthquake on the Rahotu, Oaonui or Kina faults which, of the faults studied, are farthest from the Mt Taranaki volcanic cone.

  • The tragic events of the Indian Ocean tsunami on 26 December 2004 highlighted shortcomings in the alert and response systems for tsunami threats to Western Australia's (WA) coastal communities. To improve community awareness and understanding of tsunami hazard and potential impact for Western Australia, the Fire and Emergency Services Authority of WA (FESA) established a collaborative partnership with GA in which science and emergency management expertise was applied to identified communities.

  • When considering structural design with regard to wind loading, the Australian building code through the Australia/New Zealand Wind Actions Standard (AS/NZS 1170.2, 2002) as well as the wind engineering community in general, relies to a significant extent on the peak wind gust speed observations collected over more than 60 years by the Bureau of Meteorology (BoM). The wind-loading performance of our infrastructure (resilience) is based primarily on the Dines anemometer interpretation of the peak gust wind speed. In the early 1990's BoM commenced a program to replace the aging pressure tube Dines anemometer with the Synchrotac and Almos cup anemometers. This paper presents the results of a reanalysis of the current BoM peak wind gust database for the non-cyclonic region (Region A) of AS/NZS 1170.2 (2002). We compares estimates of the 500-year RP peak wind gust hazard magnitude derived of varying observing record lengths obtained from 31 "Region A" BoM sites. Region A was considered for this initial study as record length would contain a significant number of extreme events (synoptic or thunderstorm) over decadal time scales (i.e. extremes not dominated by one or two tropical cyclone events). To isolate the issue of anemometer replacement, only wind stations located at airports (consistent exposure) and with more than 30 years of record were considered. The methodology was formulated to explore the consistency of peak wind gust measurements due to issues surrounding equipment upgrading. Comparison of results indicated that the recent period (1990-2006) appears to have a reduction in significant events (13 of 31 sites have a mean 500 year RP below the 95% confidence limit for the 500 year RP estimate using the total record). Future plans are to calibrate some existing Dines instruments in-situ in an effort to provide sufficient information to fully specify the dynamic response over the range of operating conditions