From 1 - 10 / 409
  • A new continental-scale geochemical atlas and dataset for Australia were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • ABSTRACT: Building on method developments achieved during a series of precursor pilot projects, the National Geochemical Survey of Australia (NGSA) project targets catchment outlet (overbank) sediments as a uniform sampling medium. These transported, fine-grained materials are collected (from a shallow and a deeper level) near the lowest point of 1390 catchments, which cover 91% of the country. Dry and moist Munsell® colour, soil pH and electrical conductivity and pH of 1:5 (soil:water) slurries are recorded and laser particle size analysis and infrared spectroscopy are performed. The dried samples are sieved into two grain-size fractions (<2 mm and <75 mm) that are analysed by x-ray fluorescence (XRF) and inductively-coupled mass spectrometry (ICP-MS) (multi-element, total analyses), by ICP-MS after aqua regia digestion (multi-element, including low level gold), and specialised methods for platinum group elements, fluorine and selenium. At the time of writing, 78% of the samples have been collected and most analyses are completed for the first 25% of samples. The project is due for completion in June 2011.

  • Arcview GIS containing a regolith-landfrom map with associated site database. Most sites have a field photograph hot linked into the GIS. Complementary datasets include, digital elevation model and enhanced Landsat TM imagery.

  • pH is one of the more fundamental soil properties governing nutrient availability, metal mobility, elemental toxicity, microbial activity and plant growth. The field pH of topsoil (0-10 cm depth) and subsoil (~60-80 cm depth) was measured on floodplain soils collected near the outlet of 1186 catchments covering over 6 M km2 or ~80% of Australia. Field pH duplicate data, obtained at 124 randomly selected sites, indicates a precision of 0.5 pH unit (or 7%) and mapped pH patterns are consistent and meaningful. The median topsoil pH is 6.5, while the subsoil pH has a median pH of 7 but is strongly bimodal (6-6.5 and 8-8.5). In most cases (64%) the topsoil and subsoil pH values are similar, whilst, among the sites exhibiting a pH contrast, those with more acidic topsoils are more common (28%) than those with more alkaline topsoils (7%). The distribution of soil pH at the national scale indicates the strong controls exerted by precipitation and ensuing leaching (e.g., low pH along the coastal fringe, high pH in the dry centre), aridity (e.g., high pH where calcrete is common in the regolith), vegetation (e.g., low pH reflecting abundant soil organic matter), and subsurface lithology (e.g., high pH over limestone bedrock). The new data, together with existing soil pH datasets, can support regional-scale decision-making relating to agricultural, environmental, infrastructural and mineral exploration decisions.

  • This glossary has been written to compile a single reference for terms commonly used in regolith science, to bring consistency and uniformity to the terminology of regolith science, and to explain the way words have been used in the regolith literature

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable

  • Iron (Fe) oxide mineralogy in most Australian soils is poorly characterised, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential (Eh), moisture and temperature in the soil environment. The Fe oxide mineralogy exerts a strong control on soil colour. Visible-near infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil as well as soil colour. The aims of this paper are to: (i) measure the hematite and goethite content of Australian soils from their vis-NIR spectra, (ii) compare these results to measurements of soil colour, and (iii) describe the spatial variability of hematite, goethite and soil colour, and map their distribution across Australia. The spectra of 4606 surface soil sample from across Australia were measured using a vis-NIR spectrometer with a wavelength range between 350-2500 nm. We determined the Fe oxide content from characteristic absorptions of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalised iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalised across Australia with its spatial uncertainty using sequential indicator simulation. We also derived soil RGB colour from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB colour values were made into a composite true colour image and were also converted to Munsell hue, value and chroma. These colour maps were compared to the map of the NIODI and both were used for interpretation of our results. The work presented here was evaluated using existing studies on the distribution of Fe oxides in Australian soils.