From 1 - 10 / 199
  • Arcview GIS containing a regolith-landfrom map with associated site database. Most sites have a field photograph hot linked into the GIS. Complementary datasets include, digital elevation model and enhanced Landsat TM imagery.

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable

  • Several different techniques have recently been developed to rapidly map and characterise surface landforms and materials for groundwater recharge studies in Australia. In this example, in the Darling Floodplain of western New South Wales, regional landform mapping was carried out primarily using Google Earth imagery with hill-shaded LiDAR DEM and SPOT images as visual guide and some field validation. A second, more detailed map (compiled: 1:25,000; final usable scale: 1:30,000) included landform elements such as borrow pits, individual scrolls and oxbow lakes was compiled using LiDAR DEM. Prior to landform delineation, the LiDAR DEM required levelling to eliminate tilting in the landscape, by subtracting the floodplain trend surface from the DEM. This is particularly important in floodplains and river profiles where there can be as much as a 20 m difference between the upper and lower reaches. A best-fit trend surface, which provides an average estimation of change in slope along a single plane, was required to level the data. Once the LiDAR was levelled, an interactive contour tool in ArcGIS was used to generate graphic outlines of particular features at identified breaks in elevation using hill-shading, e.g. channel banks and dune bases. Slope and 3-D DEM visualisation also facilitated identification of these breaks. Further editing was required to assemble line work, convert it into polygons, and assign landform attributes. A greater number of landform classes were developed at this finer scale than for the regional scale. In many cases, specific landforms are characterised by particular surface materials, though sediment type can vary within a single landform class. SPOT imagery has been used to delineate surface materials. In summary, the combination of the two datasets - landforms and surface materials - has allowed for the identification of potential recharge site

  • The floodplain of the lower Balonne River is in the upper reaches of the Murray Darling Basin. The region has been extensively developed for agriculture, in particular irrigated cotton, and is highly productive. Multidisciplinary investigations to inform land management generated extensive sets of remotely sensed data including Landsat TM, airborne gamma-ray radiometrics, aerial photography, ASTER imagery, and digital elevation models. These datasets provided the basis for regolith and geomorphic mapping. The wealth of data has allowed characterisation of the lower Balonne River system which is typical of many of the dryland rivers of southern Queensland. The geomorphic map of the lower Balonne floodplain has 8 major units based on landform and geomorphic processes. Bedrock consists of the slightly deformed and extensively weathered marine Cretaceous Griman Creek Formation. Coincident with erosion and weathering, Paleogene quartz gravels were deposited and are now extensively cemented and preserved as remnants forming zones of inverted relief. Much of the present landscape consists of a series of juxtaposed depositional units that have infilled an incised valley system. The different depositional units show the palaeo-Balonne River migrating to the west. This is interpreted to be a result of tectonic depression and tilting to the west, causing avulsion and anastomosing of the palaeo-channels. The modern Balonne River system consists of a number of easily recognised segments. In the north, the modern channel is incised as a single channel. To the south the channel opens out onto an anastomosing plain with branching and reconnecting small-scale channels. Source bordering dunes, currently inactive, have also formed along the western and eastern sides of the modern river and are prominent in large dunes in the south along the present Moonie River. Their absence in older landscape elements points to increasing aridity over time in the river system.

  • Atlas of Regolith Materials of Queensland. Companion to the 1:2,500,00 Queensland Regolith-Landform Map and GIS. Both broad and detailed regolith mapping and characterisation of materials was used to build an understanding of the regolith and its associated landforms. This state-wide overview contributes significantly to understanding the regolith and landform processes and regolith materials of Australian arid and coastal environments. This Queensland study extends seamlessly from the Northern Territory Regolith Landform Map and provides a broad-scale framework fro guiding geochemical prospecting for a wide range of minerals and materials.

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable