From 1 - 10 / 223
  • Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Barr Creek - Gunbower study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • The 'River Murray Corridor (RMC) Salinity Mapping Project', provides important new information in relation to salinity hazard and management along in a 20 km-wide swath along a 450 km reach of the River Murray. The project area contains iconic wetlands, national and state forest parks, irrigation and dryland farming assets and the Murray River, significant areas of which are at risk from increasing salinisation of the River, the floodplain, and underlying groundwater resources. The project utilised a hydrogeological systems approach to integrate and analyse data obtained from a large regional airborne electromagnetic (AEM) survey (24,000 line km @ 150m line-spacing in a 20 km-wide swath along the Murray River), field mapping, and lithological and hydrogeochemical data obtained from drilling. New holistic inversions of the AEM data have been used to map key elements of the hydrogeological system and salinity extent in the shallow sub-surface (top 20-50 m). The Murray River is known to display great complexity in surface-groundwater interactions along its course. Electrical geophysical methods (such as AEM) are able to map surface-groundwater interaction due to the contrast between (electrically resistive) fresh water in the river, and (electrically conductive) brackish to saline groundwater in adjacent sediments. The location of significant river flush zones is influenced both by underlying geology and the location of locks, weirs and irrigation districts. The study has also identified significant areas of high salinity hazard in the floodplain and river, and quantified the salt store and salt load across the floodplain. The study has also identified sub-surface factors (including saline groundwater, shrinking flush zones, declining water tables) linked to vegetation health declines.

  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.

  • Airborne Geophysical Data Acquired as part of the Gawler Mineral Promotion Project. Includes point located, gridded and image data. TEMPEST electromagnetics, magnetics and elevation data.

  • The Ord Valley Airborne Electromagnetic (AEM) Interpretation Project (OVAEIP) was a collaborative project between the Ord Irrigation Cooperative (OIC), the Cooperative Research Centre for Landscape, Environments and Mineral Exploration (CRC LEME), Geoscience Australia (GA) and CSIRO, co-funded by both the Australian and Western Australian Governments. The aim was to provide comprehensive spatial information to address specific questions on salinity and groundwater management in the existing Ord Irrigation Area (ORIA) and those earmarked for irrigation expansion. The project included the acquisition of 5936 line km of AEM data using the SKYTEM time domain system, and a Light Ranging and Detection (LiDAR) DEM. This data was used in conjunction with geomorphic mapping, ground and downhole geophysics, drilling information and pre-existing hydrogeological data to produce a suite of derived spatial products including maps of salinity hazard, salt stores, groundwater salinity and lithology. The spatial analysis and interpretation of constrained AEM data and geological mapping have delineated the lithostratigraphy in 3D, including sand and gravel filled palaeochannels, clay and silt distribution, as well as salt stores and groundwater quality. Surface salinity hazard maps were derived using the spatial analysis of LANDSAT-5 TM, AEM, hydrogeological and geomorphic data. The study demonstrated the effectiveness of GIS and geospatial analysis within an integrated approach with products providing a framework for future irrigation development. Outputs include a comprehensive GIS for spatial interrogation and hard-copy atlases for use by stakeholders and local landholders.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Liparoo - Robinvale study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • Phase 3a of the Broken Hill Managed Aquifer Recharge (BHMAR) project is tasked with assessing whether a sustainable ground water extraction approach, including MAR, is a feasible option for securing Broken Hill's water supply in times of drought. More specifically, the project is charged with determining, with a defined level of confidence, whether at least 3 years water supply (~30 GL), at a similar salinity to that already available for Broken Hill would be available at all times through these new arrangements. This interim report documents the preliminary findings of the Phase 3a study, which is focussed on a priority target immediately south of Menindee.

  • Displays the coverage of publicly available digital aeromagnetic data. The map legend is coloured according to the line spacing of the survey with broader line spacings (lower resolution surveys) displayed in shades of blue. Closer line spacings (higher resolution surveys are displayed in red, purple and coral.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Barr Creek - Gunbower study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.