From 1 - 10 / 42
  • This collection contains processing environments for use by external users of the Australian Geoscience Data Cube (AGDC).

  • This is the parent datafile of a dataset that comprises a set of 14+ geoscience products made up of mosaiced ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes across Australia. The individual geoscience products are a combination of bands and band ratios to highlight different mineral groups and parameters including: False colour composite CSIRO Landsat TM Regolith Ratios Green vegetation content Ferric oxide content Ferric oxide composition Ferrous iron index Opaque index AlOH group content AlOH group composition Kaolin group index FeOH group content MgOH group content MgOH group composition Ferrous iron content in MgOH/carbonate Surface mineral group distribution (relative abundance and composition)

  • The National Spectral Database (NSD) houses data from Australian remote sensing scientists. The database includes spectra covering targets as diverse as mineralogy, soils, plants, water bodies and various land surfaces. Currently the database holds spectral information from multiple locations across the country and as the collection grows in spatial / temporal coverage, the NSD will service continental scale validation requirements of the Earth observation community for satellite-based measurements of surface reflectance. <b>Value:</b> Curated spectral data provides a wealth of knowledge to remote sensing scientists. For other parties interested in calibration and validation (Cal/Val) of surface reflectance products, the Geoscience Australia (GA) Cal/Val dataset provides a useful resource of ground-truth data to compare to reflectance captured by Landsat 8 and Sentinel 2 satellites. The Aquatic Library is a robust collection of Australian datasets from 1994 to present time, primarily of end-member and substratum measurements. The University of Wollongong collection represents immense value in end-member studies, both terrestrial and aquatic. <b>Scope:</b> The NSD covers Australian data including historical datasets as old as 1994. Physical study sites encompass locations around Australia, with spectra captured in every state. <b>Data types:</b> - Spectral data: raw digital numbers (DN), radiance and reflectance.  - From spectral bands VIS-NIR, SWIR1 & SWIR2: wavelengths 350nm - 2500nm collected with instruments in the field or lab setting. Contact for further information: NSDB_manager@ga.gov.au

  • Geoscience Australia (GA) has acquired Landsat satellite image data over Australia since 1979, from instruments including the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). This data represents raw telemetry which has either been received directly at Geoscience Australia's (GAs) receiving stations (Alice Springs or - formerly - Hobart), or downloaded from the United States Geological Survey Organisation. The data is maintained in raw telemetry format as a baseline to downstream processes. While this data has been used extensively for numerous land and coastal mapping studies, its utility for accurate monitoring of environmental resources has been limited by the processing methods that have been traditionally used to correct for inherent geometric and radiometric distortions in EO imagery. To improve access to Australia's archive of Landsat TM/ETM+/OLI data, several collaborative projects have been undertaken in conjunction with industry, government and academic partners. These projects have enabled implementation of a more integrated approach to image data correction that incorporates normalising models to account for atmospheric effects, BRDF (Bi-directional Reflectance Distribution Function) and topographic shading (Li et al., 2012). The approach has been applied to Landsat TM/ETM+ and OLI imagery to create the surface reflectance products. <b>Value: </b>The Landsat Raw Data Archive is processed and further calibrated to input to development of information products toward an improved understanding of the distribution and status of environmental phenomena. <b>Scope: </b>Data is provided via the US Geological Survey's (USGS) Landsat program, following downlink and recording of the data at Alice Springs Antenna (operated by Geoscience Australia) or downloaded directly from USGS EROS

  • This collection is used to provide an environment for external access to the Australian Geoscience Data Cube Virtual Desktop Interface (VDI).

  • 1. Band ratio: B7/B8 Blue-cyan is magnesite-dolomite, amphibole, chlorite Red is calcite, epidote, amphibole useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives.

  • 1. Band ratio: B5/B7 Blue is well ordered kaolinite, Al-rich muscovite/illite, paragonite, pyrophyllite Red is Al-poor (Si-rich) muscovite (phengite) useful for mapping: (1) exposed saprolite/saprock is often white mica or Al-smectite (warmer colours) whereas transported materials are often kaolin-rich (cooler colours); (2) clays developed over carbonates, especially Al-smectite (montmorillonite, beidellite) will produce middle to warmers colours. (2) stratigraphic mapping based on different clay-types; and (3) lithology-overprinting hydrothermal alteration, e.g. Si-rich and K-rich phengitic mica (warmer colours). Combine with Ferrous iron in MgOH and FeOH content products to look for evidence of overlapping/juxtaposed potassic metasomatism in ferromagnesian parents rocks (e.g. Archaean greenstone associated Au mineralisation) +/- associated distal propyllitic alteration (e.g. chlorite, amphibole).

  • 1. Band ratio: B4/B3 Blue is low abundance, Red is high abundance (1) Exposed iron ore (hematite-goethite). Use in combination with the "Opaques index" to help separate/map dark (a) surface lags (e.g. maghemite gravels) which can be misidentified in visible and false colour imagery; and (b) magnetite in BIF and/or bedded iron ore; and (3) Acid conditions: combine with FeOH Group content to help map jarosite which will have high values in both products. Mapping hematite versus goethite mapping is NOT easily achieved as ASTER's spectral bands were not designed to capture diagnostic iron oxide spectral behaviour. However, some information on visible colour relating in part to differences in hematite and/or goethite content can be obtained using a ratio of B2/B1 especially when this is masked using a B4/B3 to locate those pixels with sufficient iro oxide content.

  • 1. Band ratio: B1/B4 Blue is low abundance, Red is high abundance (potentially includes carbon black (e.g. ash), magnetite, Mn oxides, and sulphides in unoxidised envornments Useful for mapping: (1) magnetite-bearing rocks (e.g. BIF); (2) maghemite gravels; (3) manganese oxides; (4) graphitic shales. Note 1: (1) and (4) above can be evidence for "reduced" rocks when interpreting REDOX gradients. Combine with AlOH group Content (high values) and Composition (high values) products, to find evidence for any invading "oxidised" hydrothermal fluids which may have interacted with reduced rocks evident in the Opaques index product.

  • Band ratio: B3/B2 Blue is low content Red is high content Use this image to help interpret the amount of "obscuring/complicating" green vegetation cover.