AusLAMP
Type of resources
Keywords
Publication year
Service types
Topics
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New datasets have been collected in Northern Australia, as part of Geoscience Australia’s Exploring for the Future (EFTF) program with in-kind contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland. This web service depicts the location of the 155 sites which were used in this study.
-
Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales (NSW) magnetotelluric survey is a collaborative project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia. Long period magnetotelluric data are being acquired at around 305 sites on a half degree grid spacing across the state of NSW. <u>Phase one</u> This record outlines the field acquisition, data QA/QC, and data processing methodologies relating to the 224 sites released in phase one. The data are released in EDI format containing impedance estimates and transfer functions for each processed site. <u>Phase two</u> A further 73 EDI format data are released as part of phase two. These data were collected and processed using the same methodology as described in the GA record released as part of phase one.
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree grid across the Australian continent. Data were collected in northern Australia under Geoscience Australia’s Exploring for the Future (EFTF) program from 2016 to 2019. This survey covers the area in south parts of Northern Territory and north western region of Queensland. The project aims to improve understanding of the lithospheric structure in northern Australia. It also provide pre-competitive data and knowledge for selecting mineral prospective areas in the under-explored and covered regions. This data package contains the preferred resistivity model and associated information for the project. The report provides details for data acquisition, data process and data inversion. The results provide new insights on the lithospheric architecture and mineral potential in the region.
-
<div>The Magnetotelluric (MT) Sites database contains the location of sites where magnetotelluric (MT) data have been acquired by surveys. These surveys have been undertaken by Geoscience Australia and its predecessor organisations and collaborative partners including, but not limited to, the Geological Survey of New South Wales, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of South Australia, Mineral Resources Tasmania, the Geological Survey of Victoria and the Geological Survey of Western Australia and their parent government departments, AuScope, the University of Adelaide, Curtin University and University of Tasmania. Database development was completed as part of Exploring for the Future (EFTF) and the database will utilised for ongoing storage of site information from future MT acquisition projects beyond EFTF. Location, elevation, data acquisition date and instrument information are provided with each site. The MT Sites database is a subset of tables within the larger Geophysical Surveys and Datasets Database. </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), use Magnetotelluric as your search term to find the relevant data.</div>
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>
-
<div>The Geoscience Australia magnetotellurics (MT) program collaborates with state and territory geological surveys, universities, and AuScope to acquire audio- (AMT), broadband- (BBMT), and long-period-MT (LPMT) data to help understand the electrical conductivity structure of the Australian continent.</div><div><br></div><div>This report collates the time-series and processed data, electrical conductivity models, and publications released for projects for which Geoscience Australia was the lead organisation, a collaborator, or an in-kind or financial supporter. For the most part, this report does not reference MT data, models or publications released by other parties for projects in which Geoscience Australia had no involvement. Please see Geoscience Australia’s AusLAMP, Exploring for the Future AusLAMP, and Regional Magnetotellurics webpages for more information.</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government.</div><div><br></div><div>The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. As part of the Exploring for the Future Program, Geoscience Australia has completed AusLAMP data acquisition at 32 sites across the southwest and southeast region of Western Australia. The data were acquired using LEMI-424 instruments and were processed using the LEMI robust remote referencing process code. </div><div><br></div><div>This data release contains acquired time series data and processed data at each site. The time series data are in original format (.txt) recorded by the data logger and in MTH5 hierarchical format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded data into MTH5 format. The processed data are in Electrical Data Interchange (EDI) format. </div><div><br></div><div>We acknowledge the Geological Survey of Western Australia for assistance with field logistics and land access, traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected.</div><div><br></div><div>Time series data is available on request from clientservices@ga.gov.au - Quote eCat# 149416.</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across northern and western Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. The processed data and 3D resistivity model have been released (https://dx.doi.org/10.26186/148633). </div><div><br></div><div>This data release contains site locations and acquired time series data at each site in two formats:</div><div>1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format.</div><div>2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger.</div><div><br></div><div>We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected.</div><div><br></div><div><strong>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148978</strong></div><div><br></div>
-
Long-period magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, the identification of which is an important element of several mineral system models. Given the importance of these data, governments and academia have united under the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to collect long-period MT data across the continent on a ~55 km-spaced grid. Here, we use AusLAMP data to demonstrate the MT method as a regional-scale tool to identify and select prospective areas for mineral exploration undercover. We focus on the region between Tennant Creek in the Northern Territory and east of Mount Isa in Queensland. Our results image major conductive structures up to 150 km deep in the lithosphere, such as the Carpentaria Conductivity Anomaly east of Mount Isa. This anomaly is a significant lithospheric-scale conductivity structure that shows spatial correlations with a major suture zone and known iron oxide–copper–gold deposits. Our results also identify similar features in several under-explored areas that are now considered to be prospective for mineral discovery. These observations provide a powerful means of selecting frontier regions for mineral exploration undercover.. <b>Citation:</b> Duan, J., Kyi, D., Jiang, W. and Costelloe, M., 2020. AusLAMP: imaging the Australian lithosphere for resource potential, an example from northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.