From 1 - 10 / 4082
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Geoscience Australia's GEOMACS model was utilised to produce hindcast hourly time series of continental shelf (~20 - 300 m depth) bed shear stress (unit of measure: Pascal, Pa) on a 0.1 degree grid covering the period March 1997 to February 2008 (inclusive). The hindcast data represents the combined contribution to the bed shear stress by waves, tides, wind and densitydriven circulation. Included in the parameters that represent the magnitude of the bulk of the data are the quartiles of the distribution; Q25, Q50 and Q75 (i.e. the values for which 25, 50 and 75 percent of the observations fall below). Q25, or the 0.25 Quartile of the Geomacs output, represents the values for which 25% of the observations fall below (Hughes & Harris 2008).

  • This dataset contains point, line and polygon topographic and cultural data for the Cocos (Keeling) Islands. Coverage is of Home and West Islands. To view a sample of the data showing the ArcView legend click here.

  • This map is designed to show broad regolith-landform units, giving a regional overview of the main regolith types and their associated landforms.Included are the author's detailed Explanatory Notes to the map.

  • Geoscience Australia undertakes classification of biophysical datasets to create seabed habitat maps (termed 'seascapes') for the Australian margin and adjacent sea floor. Seascapes describe a layer of ecologically meaningful biophysical properties that spatially represents potential seabed habitats. Each seascape area corresponds to a region of the seabed that contains similar biophysical properties and, by association, potential habitats and communities. The lack of available standardised biological data at the national scale precludes the integration of biological information into the derivation of national seascapes. By focusing on a much smaller scale over tens of kilometres near the Glomar Shoals in Western Australia, referred to as 'local scale', available biological data were integrated into new derivations of seascapes and results compared with seascapes without these data. Using physical data as described in Whiteway et al. 2007 (GA Record 2007/11) and demersal fish data obtained from the 1967 Russian Berg-3 survey, we have derived four new local sets of seascape to compare the effects of integrating biological data: 1) Standard seascapes using only physical data, 2) Seascapes with an additional biology layer based on the Shannon diversity index, 3) Seascapes with an additional biology layer based on the Simpson diversity index, and 4) Seascapes with an additional layer of randomly-generated data. At the 'regional-scale' we derived two sets of seascapes: 1) Seascapes with an additional biology layer based on the Shannon diversity index that encompasses the entire Berg-3 survey area in northwest Australia, and 2) Standard seascapes using only physical data for the same area. This datsets is the regional scale northwest Australian seascape produced with a biological layer called the 'Shannon Diversity Index'.

  • This is the positional data of AGSO's offshore seismic surveys that fall into the area of the project. The line locations for these seismic surveys are from AGSO's Mardat Database. The surveys have been 'clipped' to the project polygon. There are 9 surveys in the one file, they are: 100r97, 116, 119, 130, 163VTT, 165VTT, 165YST, 175BBHR and 98r Each survey has a number of lines attached to them. There is only one vector file: agso_seismic.shp - Line data

  • This is a polygon file, one of five within the Rockhampton Regional Council coastline, which buffers the coastline by 4 km inland. This extent was use to clip the storm tide inundation extents and to visualise each of the five distinct inundation zones. This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173).

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file identifies the extent of inundation from sea-level rise combined with Highest Astronomical Tide (HAT) which is 3.9 m AHD. The name of the file indicates the scneraio water height, e.g. p3p9_LGAClip indicates the inundation shown is for 3.9 m above AHD and that the file has been clipped by the Local Government Area (LGA) to remove the offshore inundation identified.

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file presents the future climate wind hazard. The file name indicates the hazard being presented, e.g. wspd_rp_1000_max.tif is the 1000 year Return Period (RP - equivalent to Average Reccurrence Interval (ARI)) and is the maximum wind speed from all directions. The local wind multipliers adjust the 3-second gust regional RP wind speed from 10 m above ground level to ground level with the consideration of topography and shielding effects. Eight cardinal directions are calculated for every raster cell and the maximum of these values is then derived and presented here.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km.. gnaraloo_3m is an ArcGIS layer of the backscatter grid of the Gnaraloo survey area produced from the processed EM3002 backscatter data of the survey area using the CMST-GA MB Process