From 1 - 10 / 17
  • In order for the Global Earthquake Model (GEM) to be able to calculate the impact of earthquakes it is necessary for it to be able to assess the building replacement cost at the level of individual buildings. This document outlines the methodology proposed by Geoscience Australia to determine the replacement cost for buildings. The methodology proposes a method for determining the rate (measured in currency per unit floor area) to reconstruct a building with given characteristics. The reconstruction cost is determined by multiplying the rate by the floor area. The methodology discusses the various factors that affect the rate and suggests sources where data on rates may be found.

  • A raster representation of distances to the nearest transmission line infrastructure, in 10km intervals.

  • A line representation of distances to the nearest transmission line infrastructure, in 10km intervals.

  • A line representation of distances to the nearest transmission substation infrastructure, in 10km intervals.

  • A raster representation of distances to the nearest transmission substation infrastructure, in 10km intervals.

  • The National Consulates dataset presents the spatial locations; in point format, of all known consulate facilities within Australia.

  • The National Foreign Embassies dataset presents the spatial locations; in point format, of all known foreign embassies and high commissions within Australia.

  • PLEASE NOTE: There is a more recent version of this product which can be accessed via the link on the right hand pane. It has been widely recognised that Light Detection And Ranging (LiDAR) data is a valuable resource for estimating the geometry of natural and artificial features. While the LiDAR point cloud data can be extremely detailed and difficult to use for the recognition and extraction of three dimensional objects, the Digital Elevation Model and Digital Surface Model are useful for rapidly estimating the horizontal extent of features and the height variations across those features. This has utility in describing the characteristics of buildings or other artificial structures. LiDAR is an optical remote sensing technology that can measure the distance from the sensor to a target area by illuminating the target area with light, often using pulses from a laser scanner. LiDAR has many applications in a broad range of fields, including aiding in mapping features beneath forest canopies, creating high resolution digital elevation and surface models. A Digital Surface Model (DSM) represents the earth's surface and includes all objects on it, while the Digital Elevation Model (DEM) represents the bare ground surface without any natural or artificial objects such as vegetation, structures and buildings. The Building Geometry Model (BGM) application is a Python-based software system, used to execute ArcGIS geoprocessing routines developed by Geoscience Australia, which can derive the horizontal and vertical extents and geometry information of building and other elevated features from LiDAR data. The Building Geometry Model algorithms were developed in response to the availability of LiDAR data for the development of exposure information for natural hazard risk analysis. The LiDAR derivatives were used to estimate building footprint areas, inter-storey heights across areas occupied by buildings, and eventually an estimate of gross floor area of different types of buildings. The design and development of the BGM application started in February 2012 as part of a natural hazard risk analysis project in the Philippines. Many of the examples of interface usage in this document contain references to locations and terms used in the Philippines. However, the BGM application has been designed to process data regardless of its geographic location. The object-oriented programming techniques and design patterns were used in the software design and development. In order to provide users with a convenient interface to run the application on Microsoft® Windows, a Python-based Graphical User Interface (GUI) was implemented in March 2012 and significantly improved in the subsequent months. The application can be either run as a command-line program or start via the GUI. The BGM application is currently benchmarked as Version 1.0 as it is still under development. This document is a user guide to the BGM GUI. It describes the main User Interface (UI) components, functionality and procedures for running the BGM processes via GUI.

  • A conference paper describing GIS tools developed in support of the blast loss estimation capability for the Australian Reinsurance Pool Corporation. The paper focus is on GIS tools developed for: exposure database construction and integration of a number of datasets including 3D building geometry

  • SIFRA is the acronym for 'System for Infrastructure Facility Resilience Analysis'. The system provides an analytical approach for modelling the vulnerability of high-value infrastructure facilities by taking into consideration the fragilities and configurations of its constituent components. In doing this it uses a network theory based approach for modelling the facility and its operations. This method makes it possible to consider the discrete component-level vulnerabilities within a facility and, significantly, their system-level operational implications to the composite facility fragility. SIFRA also includes tools for modelling system restoration times under varied levels of resource allocation scenarios, and for identifying component criticality.