Keyword

Earth Sciences

20269 record(s)
 
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
From 1 - 10 / 20269
  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.

  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • Vertical geochemical profiling of the marine Toolebuc Formation, Eromanga Basin - implications for shale gas/oil potential The regionally extensive, marine, mid-Cretaceous (Albian) Toolebuc Formation, Eromanga Basin hosts one of Australia's most prolific potential source rocks. However, its general low thermal maturity precludes pervasive petroleum generation, although regions of high heat flow and/or deeper burial may make it attractive for unconventional (shale gas and shale oil) hydrocarbon exploration. Previous studies have provided a good understanding of the geographic distribution of the marine organic matter in the Toolebuc Formation where total organic carbon (TOC) contents range to over 20% with approx. half being of labile carbon and convertible to gas and oil. This study focuses on the vertical profiling, at the decimetre to metre scale, of the organic and inorganic geochemical fingerprints within the Toolebuc Formation with a view to quantify fluctuations in the depositional environment and mode of preservation of the organic matter and how these factors influence hydrocarbon generation thresholds. The Toolebuc Formation from three wells, Julia Creek-2 and Wallimbulla-2 and -3, was sampled over an interval from 172 to 360m depth. The total core length was 27m from which 60 samples were selected. Cores from the underlying Wallumbilla Formation (11 samples over 13m) and the overlying Allaru Mudstone (3 samples) completed the sample set. Bulk geochemical analyses included %TOC, %carbonate, %total S, -15N kerogen, -13C kerogen, -13C carbonate, -18O carbonate, and major, minor and tracer elements and quantitative mineralogy. More detailed organic geochemical analyses involved molecular fossils (saturated and aromatic hydrocarbons, and metalloporphyrins), compound specific carbon isotopes of n-alkanes, pyrolysis-gas chromatography and compositional kinetics. etc.

  • The impacts of climate change on sea level rise (SLR) will adversely affect infrastructure in a significant number of Australian coastal communities. A first-pass national assessment has identified the extent and value of infrastructure potentially exposed to impacts from future climate by utilizing a number of fundamental national scale datasets. A mid-resolution digital elevation model was used to model a series of SLR projections incorporating 100 year return-period storm-tide estimates where available (maximum tidal range otherwise). The modeled inundation zones were overlaid with a national coastal geomorphology dataset, titled the Smartline, which identified coastal landforms that are potentially unstable under the influence of rising sea level. These datasets were then overlain with Geoscience Australia's National Exposure Information System (NEXIS) to quantify the number and value of infrastructure elements (including residential and commercial buildings, roads and rail) potentially vulnerable to a range of sea-level rise and coastal recession estimates for the year 2100. In addition, we examined the changes in exposure under a range of future Australian Bureau of Statistics population scenarios. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100 (replacement value of approximately $A72 billion). Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only ($A64 billion). Queensland and New South Wales have the largest vulnerability considering both value of infrastructure and the number of buildings affected. Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100.