From 1 - 10 / 103
  • Tsunami inundation models are computationally intensive and require high resolution elevation data in the nearshore and coastal environment. In general this limits their practical application to scenario assessments at discrete communities. This paper explores the use of moderate resolution (250 m) bathymetry data to support computationally cheaper modelling to assess nearshore tsunami hazard. Comparison with high resolution models using best available elevation data demonstrates that moderate resolution models are valid at depths greater than 10 m in areas of relatively low sloping, uniform shelf environments, however in steeper and more complex shelf environments they are only valid to depths of 20 m or greater. In contrast, arrival times show much less sensitivity to resolution. It is demonstrated that modelling using 250 m resolution data can be useful in assisting emergency managers and planners to prioritise communities for more detailed inundation modelling by reducing uncertainty surrounding the effects of shelf morphology on tsunami propagation. However, it is not valid for modelling tsunami inundation.

  • Optically stimulated luminescence (OSL) dating of sand sheets provides a chronology of the largest tsunamis in western Thailand over the late Holocene. Four sand sheets deposited by pre-2004 tsunamis were dated by luminescence to 380 ± 50, 990 ± 130, 1410 ± 190 and 2100 ± 260 years ago (at 1-sigma precision). These compare with previous radiocarbon ages of detrital bark high in buried soils (Jankaew et al., 2008), which suggest that the most recent large-scale predecessor to the 2004 tsunami occurred soon after 550-700 cal BP, and that at least three such tsunamis occurred over the past 3000 years. Concordant OSL ages from successive beach ridges (1600 ± 210 to 2560 ± 350 years ago) and tidal flat deposits (2890 ± 390 years ago) provides a set of limiting maximum ages for sand sheet deposition which, when combined with the sand sheet ages, provide a robust average for tsunami recurrence. The ages imply that between 350 to 700 years separates successive tsunamis on the Andaman coast of Thailand with an average tsunami recurrence interval of 550 years. These results show OSL can provide independent estimates of tsunami recurrence for hazard analysis, particularly in areas where suitable material for radiocarbon dating is unavailable.

  • Keynote presentation to cover * the background to tsunami modelling in Australia * what the modelling showed * why the modelling is important to emergency managers * the importance of partnerships * future challenges

  • The high risk of natural disasters in developing nations has considerable implications for international aid programs. Natural disasters can significantly compromise development progress and reduce the effectiveness of aid investments. In order to better understand the threat that natural disasters may pose to its development aid program, AusAID commissioned Geoscience Australia to conduct a broad natural hazard risk assessment of the Asia-Pacific region. The assessment included earthquake, volcanic eruption, tsunami, cyclone, flood, landslide and wildfire hazards, with particular attention given to countries the Australian Government considered to be of high priority to its development aid program. Geoscience Australia's preliminary natural hazard risk assessment of the region aimed to help AusAID identify countries and areas at high risk from one or more natural hazards. The frequency of a range of sudden-onset natural hazards was estimated and, allowing for data constraints, an evaluation was made of potential disaster impact. Extra emphasis was placed on relatively rare but high-impact events, such as the December 2004 tsunami, which might not be well documented in the historical record. While a detailed risk assessment was well beyond the scope of this study, it was recognized that some understanding of the potential impact of natural disasters could be achieved through the simple means of developing appropriate overlays of population and hazard. For example, given an estimate of the frequency and magnitude (VEI) at which volcanic eruptions in a certain region occur, the populations impacted could be roughly estimated by considering the average population close enough to a volcano to receive a significant impact from ash fall.

  • The Mwp method provides a rapid estimate of the moment magnitude of an earthquake based on the P-wave arrival. In this paper we present a variation of this method that addresses two problems that are encountered when applying this method in practice. The first is that the magnitude of very large earthquakes that could generate an ocean wide tsunami is generally underestimated. The second is that the method relies on the magnitude of the first significant maximum after the P-arrival in the integrated displacement (ID) seismogram. Identification of the "correct" first maximum generally has to be performed by an analyst, which introduces a subjective step in the algorithm. In this paper we present a variation of the Mwp method that estimates the asymptotic value of the ID caused by the P arrival, rather than the first maximum. Since asymptotic behaviour of the ID is never observed in practice because of seismic background noise, the new method is based on a comparison of the seismic noise signal before the arrival and the signal of the arrival itself. The new algorithm allows a fully automatic and unambiguous moment estimate. We apply the algorithm to observations of 30 strong (Mw>6.0) earthquakes around Australia, and compare the result with the moment magnitudes of these earthquakes as published by the USGS. It is found that the new algorithm is more accurate than the standard Mwp method, especially for very large (Mw>7.5) earthquakes.

  • Real-time Earthquake Monitoring at the Joint Australian Tsunami Warning Centre From November 2006, Geoscience Australia began to monitor, analyse and alert for potentially tsunamigenic earthquakes that could threaten Australia's coastline, on a 24/7 basis. This ongoing role forms part of the Australian Tsunami Warning System (ATWS) that was announced in the Australian Government's May 2005 budget to complement the Indian Ocean Tsunami Warningand Mitigation System that was being implemented by the International Oceanographic Commission. The Joint Australian Tsunami Warning Centre (JATWC), as the operational arm of the ATWS, became fully operational in October 2008. It combines the efforts of Geoscience Australia's seismic measurement and analysis and the Australian Bureau of Meteorology's coastal and deep ocean sea level monitoring and modelling to produce timely tsunami warnings for Australia and the Indian Ocean region. A beneficiary of the setup of the JATWC was Geoscience Australia's ongoing role of reporting local Australian earthquakes, as it is now also able to function on a 24/7 basis; an upgrade to its earlier on-call arrangement. This paper describes the setup of Australia's tsunami warning capability and the methodology, systems and processes used to publish potentially tsunamigenic, local Australian and large international earthquake information. The paper will also highlight some of the future development activities to improve the accuracy and timeliness of Geoscience Australia's earthquake information.

  • The major tsunami disaster in the Indian Ocean in 2004, and the subsequent large events off the south coast of Indonesia and in the Solomon Islands, have dramatically raised awareness of the possibility of potentially damaging tsunamis in the Australian region. Since the 2004 Indian Ocean Tsunami (IOT), a number of emergency management agencies have worked with Geoscience Australia to help to develop an understanding of the tsunami hazard faced by their jurisdictions. Here I will discuss both the major tsunamis over the last few years in the region and the recent efforts of Geoscience Australia and others to try to estimate the likelihood of such events in the future. Since 2004, a range of probabilistic and scenario based hazard assessments have been completed through collaborative projects between Geoscience Australia and other agencies in Australia and the region. These collaborations have resulted in some of the first ever probabilistic tsunami hazard assessments to be completed for Australia and for a wide range of other countries in the southwest Pacific and Indian Oceans. These assessments not only estimate the amplitude of a tsunami that could reach the coast but also its probability. The assessments allow crucial questions from emergency managers (such as 'Just how often do large tsunamis reach our coasts?) to be quantitatively addressed. In addition, they also provide a mechanism to prioritise communities for more detailed risk assessments. This work allows emergency managers to base their decisions on the best available science and data for their jurisdiction instead of relying solely on intuition.

  • Following the tragic events of the Indian Ocean tsunami on 26 December 2004 it became obvious there were shortcomings in the response and alert systems for the threat of tsunami to Western Australia's (WA) coastal communities. The relative risk of a tsunami event to the towns, remote indigenous communities, and infrastructure for the oil, gas and mining industries was not clearly understood in 2004. Consequently, no current detailed response plans for a tsunami event in WA coastal areas existed. The Boxing Day event affected the WA coastline from Bremer Bay on the south coast, to areas north of Exmouth on the north-west coast, with a number of people requiring rescue from abnormally strong currents and rips. There were also reports of personal belongings at some beaches inundated by wave activity. More than 30 cm of water flowed down a coast-side road in Geraldton on the mid-west coast, and Geordie Bay at Rottnest Island (19 km of the coast of Fremantle) experienced five 'tides' in three hours, resulting in boats hitting the ocean bed a number of times. The vivid images of the devastation caused by the 2004 event across a wide geographical area changed the perception of tsunami and achieved an appreciation of the potential enormity of impact from this low frequency but high consequence natural hazard. With WA's proximity to the Sunda Arc, which is widely recognised as a high probability area for intra-plate earthquakes, the need to develop a better understanding of tsunami risk and model the potential social and economic impacts on communities and critical infrastructure along the Western Australian coast, became a high priority. Under WA's emergency management arrangements, the Fire and Emergency Services Authority (FESA) has responsibility for ensuring effective emergency management is in place for tsunami events across the PPRR framework.

  • The Attorney General's Department (AGD) has supported Geoscience Australia (GA) to develop inundation models for one South Australia (SA) community with the view of building the tsunami planning and preparation capacity of the SA State Government. The community that was chosen was Victor Harbor, which also includes the townships of Port Elliot and Middleton. These locations were selected in collaboration with the SA State Emergency Service (SES), SA Department of Environment and Natural Resources (DENR) and the Australian Government based on the National Near Shore Tsunami Hazard Assessment [1] that highlighted tsunami amplification near Victor Harbor. Three tsunamigenic events were selected for modelling from the scenario database that was calculated as part of the national offshore probabilistic Probabilistic Tsunami Hazard Aassessment (PTHA) [2]. The events selected are hypothetical and are based on the current understanding of the tsunami hazard. Only earthquake sources are considered as these account for the majority of tsunami that have historically been observed in Australia. The suite of events includes three 'worst-case' or 1 in 10 000 year hazard event from three different source zones; the Puysegur Trench, Java Trench and South Sandwhich Islands Trench. These three source zones were identified from the PTHA to contribute significantly to the offshore tsunami hazard near Victor Harbor.

  • The information within this document and associated DVD is intended to assist emergency managers in tsunami planning and preparation activities. The Attorney General's Department (AGD) has supported Geoscience Australia (GA) in developing a range of products to support the understanding of tsunami hazard through the Australian Tsunami Warning System Project. The work reported here is intended to further build the capacity of the Tasmanian State Government in developing inundation models for prioritised locations.