From 1 - 10 / 638
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area F Brewarrina magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000, 1994-95, AREA F, Brewarrina. This grid has a cell size of 0.00048 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1995 by the NSW Government, and consisted of 51199 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00097 degrees (approximately 100m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 42604 line-kilometres of data at 400m line spacing and 80m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area I Albury magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000, 1994-95, AREA I, Albury. This grid has a cell size of 0.00049 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1996 by the NSW Government, and consisted of 35041 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00049 degrees (approximately 50m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 1996 by the NSW Government, and consisted of 35041 line-kilometres of data at 250m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area K Peel magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000 Area K, Peel (Inverell,Manilla), NSW, 1998. This grid has a cell size of 0.00048 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1998 by the NSW Government, and consisted of 61165 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area K Peel magnetic grid geodetic has a cell size of 0.00048 degrees (approximately 50m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 61165 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area J Cobar Nymagee Part1 magnetic grid geodetic has a cell size of 0.00049 degrees (approximately 50m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 46744 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area J Cobar Nymagee Part1 magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000 Area J,Cobar-Nymagee, NSW, 1998. This grid has a cell size of 0.00049 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1998 by the NSW Government, and consisted of 46744 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area A3 Bancannia Trough magnetic grid geodetic has a cell size of 0.00048 degrees (approximately 50m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 21000 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00048 degrees (approximately 50m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 61165 line-kilometres of data at 250m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.