From 1 - 10 / 29
  • Large-scale storage of commercially produced hydrogen worldwide is presently stored in salt caverns. Through the Exploring for the Future program, Geoscience Australia is identifying and mapping salt deposits in Australia that may be suitable for hydrogen storage. The Boree Salt in the Adavale Basin of central Queensland is the only known thick salt accumulation in eastern Australia, and represent potentially strategic assets for underground hydrogen storage. The Boree Salt consists predominantly of halite and can be up to 555 m thick in some wells. Geoscience Australia contracted CSIRO to conduct analyses four Boree Salt whole cores extracted from Boree 1 and Bury 1 wells. The tests were carried out to determine the seal capacity (mercury injection capillary pressure - MICP), mineralogy (X-ray diffraction - XRD), and inorganic geochemistry of the cores. The entire core sections were scanned using X-ray CT images. In addition, four plugs were taken from the cores and tested for dry bulk density, grain density, gas porosity, and permeability. Two plugs underwent ultra-low permeability tests. The MICP test suggests that the Boree Salt is a competent seal for hydrogen storage. Mineralogy testing (XRD) revealed that the Boree Salt samples primarily comprise halite (96.5%), minor anhydrite (1.32%) and dolomite (1.65%) with traces of quartz, calcite, sylvite and cristobalite. Inorganic geochemistry results show sodium (Na; 55.4% average) is the most abundant element. Further tests, such as the creep test, in-situ seal capacity test, and leaching tests, are required to determine the suitability of the Boree Salt for underground hydrogen storage. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Collection of mineral, gem, meteorite, fossil (including the Commonwealth Palaeontological Collection) and petrographic thin section specimens dating back to the early 1900s. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, and geoscience education and outreach. Over 700 specimens from the collection are displayed in our public gallery . The collection contains: • 15,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC) mainly from Australia. • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 250,000 petrographic thin section slides. • 200 historical geoscience instruments including: cartography, geophysical, and laboratory equipment." <b>Value: </b>Specimens in the collection are derived from Geoscience Australia (GA) surveys, submissions by researchers, donations, purchases and bequests. A number of mineral specimens are held on behalf of the National Museum of Australia. <b>Scope: </b>This is a national collection that began in the early 1900s with early Commonwealth surveys collecting material across the country and British territories. The mineral specimens are mainly from across Australia, with a strong representation from major mineral deposits such as Broken Hill, and almost 40% from the rest of the world. The majority of fossils are from Australia, with a small proportion from lands historically or currently under Australian control, such as Papua New Guinea and the Australian Antarctic Territory.

  • During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents. <b>Citation:</b> P. de Caritat, C. Reimann, D.B. Smith, X. Wang, Chemical elements in the environment: Multi-element geochemical datasets from continental- to national-scale surveys on four continents, <i>Applied Geochemistry</i>, Volume 89, 2018, Pages 150-159, ISSN 0883-2927, https://doi.org/10.1016/j.apgeochem.2017.11.010

  • Brumbys 1 was an appraisal well drilled and cored through Brumbys Fault at the CO2CRC Otway International Test Centre in 2018. The Otway Project is located in South West Victoria, on private farming property approximately 35 km southeast of Warrnambool and approximately 10 km northwest of the town of Peterborough. Total measured depth was 126.6 m (80 degrees). Sonic drilling enabled excellent core recovery and the borehole was completed as a groundwater monitoring well. Brumbys 1 cores through the upper Hesse Clay, Port Campbell Limestone and extends into the Gellibrand Marl. This dataset compiles the extensive analysis undertaken on the core. Analysis includes: Core log; Foram Analysis; Paleodepth; % Carbonate (CaCO3); X-Ray Fluorescence Spectrometry (XRF); Inductively Coupled Plasma Mass Spectrometry (ICP-MS); X-Ray Diffraction (XRD); Grain Size; Density; Surface Area Analysis (SAA); Gamma. Samples were taken at approximately 1-2 m intervals.

  • <div>This look-book was developed to accompany the specimen display in the office of the Hon Madeleine King MP, Minister for Resources and Northern Australia. It contains information about each of the specimens including their name, link to resource commodities and where they were from. </div><div><br></div><div>The collection was carefully curated to highlight some of Australia’s well known resources commodities as well as the emerging commodities that will further the Australian economy and contribute to the low energy transition. The collection has been sourced from Geoscience Australia’s National Mineral and Fossil Collection. </div><div><br></div><div>The collection focuses on critical minerals, ore minerals as well as some fuel minerals. These specimens align with some of Geoscience Australia major projects including the Exploring For the Future (EFTF) program, the Trusted Environmental and Geological Information program (TEGI) as well as the Repository and the public education and outreach program.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div>

  • <div>The ubiquitous nature of dust, along with localised chemical and biological signatures, makes it an ideal medium for provenance determination in a forensic context. Metabarcoding of dust can yield biological communities unique to the site of interest, similarly, geochemical and mineralogical analyses can uncover elements and minerals within dust than can be matched to a geographic location. Combining these analyses presents multiple lines of evidence as to the origin of collected dust samples. In this work, we investigated whether the time an item spent at a site collecting dust influenced the ability to assign provenance. We then integrated dust metabarcoding of bacterial and fungal communities into a framework amenable to forensic casework, (i.e., using calibrated log-likelihood ratios to predict the origin of dust samples) and assessed whether current soil metabarcoding databases could be utilised to predict dust origin. Furthermore, we tested whether both metabarcoding and geochemical/mineralogical analyses could be conducted on a single sample for situations where sampling is limited. We found both analyses could generate results capable of separating sites from a single swabbed sample and that the duration of time to accumulate dust did not impact site separation. We did find significant variation within sites at different sampling time periods, showing that bacterial and fungal community profiles vary over time and space – but not to the extent that they are non-discriminatory. We successfully modelled soil and dust samples for both bacterial and fungal diversity, developing calibrated log-likelihood ratio plots and used these to predict provenance for dust samples. We found that the temporal variation in community composition influenced our ability to predict dust provenance and recommend reference samples be collected as close to the sampling time as possible. Thus, our framework showed soil metabarcoding databases are capable of being used to predict dust provenance but the temporal variation in metabarcoded communities will need to be addressed to improve provenance estimates.&nbsp;</div> <b>Citation:</b> Nicole R. Foster, Duncan Taylor, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Michelle Waycott and Jennifer M. Young, The secret hidden in dust: Uncovering the potential to use biological and chemical properties of the airborne soil fraction to assign provenance and integrating this into forensic casework, <i>Forensic Science International: Genetics,</i> (2023) doi:https://doi.org/10.1016/j.fsigen.2023.102931

  • Heavy minerals (HMs) are minerals with a specific gravity greater than 2.9 g/cm3. They are commonly highly resistant to physical and chemical weathering, and therefore persist in sediments as lasting indicators of the (former) presence of the rocks they formed in. The presence/absence of certain HMs, their associations with other HMs, their concentration levels, and the geochemical patterns they form in maps or 3D models can be indicative of geological processes that contributed to their formation. Furthermore trace element and isotopic analyses of HMs have been used to vector to mineralisation or constrain timing of geological processes. The positive role of HMs in mineral exploration is well established in other countries, but comparatively little understood in Australia. Here we present the results of a pilot project that was designed to establish, test and assess a workflow to produce a HM map (or atlas of maps) and dataset for Australia. This would represent a critical step in the ability to detect anomalous HM patterns as it would establish the background HM characteristics (i.e., unrelated to mineralisation). Further the extremely rich dataset produced would be a valuable input into any future machine learning/big data-based prospectivity analysis. The pilot project consisted in selecting ten sites from the National Geochemical Survey of Australia (NGSA) and separating and analysing the HM contents from the 75-430 µm grain-size fraction of the top (0-10 cm depth) sediment samples. A workflow was established and tested based on the density separation of the HM-rich phase by combining a shake table and the use of dense liquids. The automated mineralogy quantification was performed on a TESCAN® Integrated Mineral Analyser (TIMA) that identified and mapped thousands of grains in a matter of minutes for each sample. The results indicated that: (1) the NGSA samples are appropriate for HM analysis; (2) over 40 HMs were effectively identified and quantified using TIMA automated quantitative mineralogy; (3) the resultant HMs’ mineralogy is consistent with the samples’ bulk geochemistry and regional geological setting; and (4) the HM makeup of the NGSA samples varied across the country, as shown by the mineral mounts and preliminary maps. Based on these observations, HM mapping of the continent using NGSA samples will likely result in coherent and interpretable geological patterns relating to bedrock lithology, metamorphic grade, degree of alteration and mineralisation. It could assist in geological investigations especially where outcrop is minimal, challenging to correctly attribute due to extensive weathering, or simply difficult to access. It is believed that a continental-scale HM atlas for Australia could assist in derisking mineral exploration and lead to investment, e.g., via tenement uptake, exploration, discovery and ultimately exploitation. As some HMs are hosts for technology critical elements such as rare earth elements, their systematic and internally consistent quantification and mapping could lead to resource discovery essential for a more sustainable, lower-carbon economy.

  • Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.

  • <div>The South Nicholson National Drilling Initiative (NDI) Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS), and the MinEx CRC. The drilling aimed to gather new subsurface data on the potential mineral and energy resources in the newly identified Carrara Sub-basin. NDI Carrara 1 is located in the eastern Northern Territory, on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics (https://portal.ga.gov.au/bhcr/minerals/648482).</div><div>&nbsp;</div><div>Following a public data release of the borehole completion report, CSIRO was contracted by Geoscience Australia (GA) under the Exploring for the Future program to analyse samples from NDI Carrara 1 for quantitative bulk and clay fraction analysis. This report presents results for quantitative bulk and clay (<2 µm) fraction analysis by X-ray powder diffraction (XRD) on 32 bulk core samples from the NDI Carrara 1. Samples were prepared and analysed at the CSIRO’s Waite Laboratories in South Australia.</div><div><br></div>

  • <div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Barkly-Isa-Georgetown (BIG) region of northeastern Australia for the second partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>One-hundred and eighty eight NGSA sediment samples were selected from the HMMA project within the EFTF’s BIG polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 151 different HMs in the BIG area. The dataset, consisting of over 18 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that copper minerals cuprite and chalcopyrite may be indicative of base-metal/copper mineralisation in the area. Accompanying this report are two data files of TIMA results, and a minerals vocabulary file. </div><div>When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>