From 1 - 10 / 35
  • All commercially produced hydrogen worldwide is presently stored in salt caverns. The only known thick salt accumulations in eastern Australia are found in the Boree Salt of the Adavale Basin in central Queensland. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. In 2021, Geoscience Australia contracted Intrepid Geophysics to perform 3D geological modelling of the Adavale Basin, particularly interested in modelling the Boree Salt deposit in the region. The developed 3D model has identified three main salt bodies of substantial thicknesses (up to 555 m) that may be suitable for salt cavern construction and hydrogen storage. These are the only known salt bodies in eastern Australia and represent potentially strategic assets for underground hydrogen storage. However, there are still unknowns with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Geoscience Australia has transformed Intrepid Geophysics' Adavale Basin 3D Modelling dataset into Petrel. This Petrel dataset is part of Geoscience Australia's Exploring for the Future program. Files including a readme file and Petrel dataset that consists of formation surfaces, faults, borehole information and formation tops. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Green steel, produced using renewable energy and hydrogen, presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia, endowed with abundant renewable resources and iron ore deposits, is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations, enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources, the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover, replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics, 16 GW of hydrogen electrolysers, and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall, this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector, underscoring the crucial role of government support in driving the growth and development of the green steel industry. <b>Citation:</b> Wang C et al., Green steel: Synergies between the Australian iron ore industry and the production of green hydrogen, <i>International Journal of Hydrogen Energy,</i> Volume 48, Issue 81, 1 October 2023, Pages 32277-32293, ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.05.041

  • This web service displays potential port locations for hydrogen export. This data is directly referenced to ‘The Australia Hydrogen Hubs Study – Technical Study’ by ARUP for the COAG Energy Council Hydrogen Working Group, 2019’.

  • A dataset of potential geological sequestration sites has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. Sites have been identified across all Australian sedimentary basins.

  • The potential for hydrogen production in the Cooper Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) of gas with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), and geological storage potential of carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Three aquifers from overlying basins (Eromanga and Lake Eyre basins) are included in the assessment. The Cooper Basin region has high renewable hydrogen potential. The presence of good aquifer throughout the basin combined with high renewable energy capacity factor resulted in significant areas with high hydrogen potential. The Cooper Basin has significant hydrocarbon resources, primarily for gas (Geoscience Australia, 2022). Although most known hydrocarbon resources have depleted since production began in the 1960s (Smith et al., 2015), a large amount of gas remains, including conventional gas (1,058 PJ reserves and 1,598 PJ resources) and unconventional basin-centred gas (2,265 PJ resources). An assessment in the overlying Eromanga Basin suggests that most areas over the Cooper Basin are prospective for potential CO2 geological storage (Bradshaw et al., 2023). Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from SMR coupled with CCS.

  • The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

  • This web service displays potential port locations for hydrogen export. This data is directly referenced to ‘The Australia Hydrogen Hubs Study – Technical Study’ by ARUP for the COAG Energy Council Hydrogen Working Group, 2019’.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • Publicly available geological data in the Galilee Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. The mineral occurrences are mostly found in the overlying basins, and they are often small and of little economic significance. There are some exceptions, such as the Lilyvale vanadium deposit found in the northern Galilee region, in the overlying Eromanga Basin. The Galilee Basin has limited potential for uranium and precious metal deposits due to relative lack of suitable formation conditions, but the depth of much of the basin makes exploration and mining difficult and expensive. There are some large coal measures found in the Galilee Basin, with 17 deposits in the Galilee and overlying Eromanga basins, containing about 38 billion tonnes of black coal. An assessment of geological storage of CO2 potential suggests the Galilee Basin Betts Creek - Rewan Play is the most prospective for storing CO2, with the highest potential around the central basin region. There are no reports of natural hydrogen in the Galilee Basin.