Basin Analysis
Type of resources
Keywords
Publication year
Scale
Topics
-
The Petrel Sub-basin CO2 Storage Study data package includes the datasets used for the study located in the Petrel Sub-basin, Bonaparte Basin, offshore Northern Territory. The datasets supports the results of the Geoscience Australia Record 2014/11 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Petrel Sub-basin and was part of the Australian government's National Low Emission Coal Initiative.
-
The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Carpentaria region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.
-
This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.
-
This GIS package contains interpreted boundaries and thalwegs (valley bottoms) of Cenozoic palaeovalley systems derived from the Frome AEM Survey dataset. Palaeovalley boundaries are by Adrian Fabris, DMITRE, and include interpreted Eyre Formation sediments only. Palaeovalley thalwegs are by Ian Roach, GA, and include interpreted Eyre Formation and Namba Formation sediments. This dataset supports the Frome AEM Survey interpretation record, GA Record 2012/40-Geological Survey of South Australia Report Book 2012/00003.
-
The Onshore Basin Inventory is a summary of data and geological knowledge of hydrocarbon-prone onshore basins of Australia. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins. Under the Exploring for the Future (EFTF) program, Geoscience Australia expanded this work to compile the Onshore Basin Inventory volume 2, which covers the Officer, onshore Canning and Perth basins. These reports provide a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage. Each report also summarises aspects that require further work. The Onshore Basin Inventory has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF energy work program. Here we provide an overview of the Onshore Basin Inventory, with emphasis on its utility in shaping the EFTF energy systems data acquisition and analysis program. <b>Citation:</b> Carr, L.K., Bailey, A.H.E., Palu, T.J. and Henson, P., 2020. Onshore Basin Inventory: building on Geoscience Australia’s pre-competitive work program with Exploring for the Future In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This Daly Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Daly Basin is a geological formation consisting of Cambrian to Ordovician carbonate and siliciclastic rocks, formed approximately 541 million to 470 million years ago. The basin stretches about 170 km in length and 30 km in width, shaped as a northwest elongated synform with gentle dips of less than 1 degree, likely due to prolonged sedimentary deposition in the shallow seas of the Centralian Superbasin, possibly along basin-scale faults. The primary groundwater reservoir within the Daly Basin is found in the Cambrian Daly River Group. This group comprises three units: the Tindall Limestone, Jinduckin Formation, and Oolloo Dolostone. The Tindall Limestone, which lies at the base, consists of grey, mottled limestone with some maroon-green siltstone or dark grey mudstone. The transition from the Tindall Limestone to the overlying Jinduckin Formation is marked by a shift from limestone to more siliciclastic rocks, indicating a change from open-shelf marine to peri-tidal environments. The Jinduckin Formation, situated above the Tindall Limestone, is composed of maroon-green dolomitic-siliciclastic siltstone with interbeds of dolomitic sandstone-siltstone, as well as dolostone and dolomitic quartz sandstone lenses. It gradually transitions into the carbonate-rich Oolloo Dolostone, with the highest finely laminated dolomitic sandstone-siltstone interbeds at the top of the Jinduckin Formation. The Oolloo Dolostone, the uppermost unit of the Daly River Group, comprises two members: the well-bedded lower Briggs Member, consisting of fine- to medium-grained crystalline dolostone and dolomitic quartz sandstone, and the massive upper King Member. Overlying the Daly River Group is the Ordovician Florina Formation, consisting of three carbonate intervals separated by two fine-grained, glauconite-bearing quartz sandstone units. The Florina Formation and the Daly River Group are covered unconformably by Cretaceous claystone and sandstone of the Carpentaria Basin, which extends over a significant portion of the Daly Basin.
-
<p>This data package includes raw (Level 0) and reprocessed (Level 1) HyLogging data from 25 wells in the Georgina Basin, onshore Australia. This work was commissioned by Geoscience Australia, and includes an accompanying meta-data report that documents the data processing steps undertaken and a description of the various filters (scalars) used in the processed datasets. <p>Please note: Data can be made available on request to ClientServices@ga.gov.au
-
<p>The Roebuck Basin and adjoining Beagle Sub-basin are underexplored areas on Australia’s North West Shelf and are undergoing renewed exploration interest since the discovery of oil at Phoenix South 1 and gas at Roc 1, 2 in the Bedout Sub-basin. A well folio of 24 offshore wells across the Beagle, Bedout, Rowley and Barcoo sub-basins was completed as part of Geoscience Australia’s assessment of hydrocarbon prospectivity across the region. The study consists of composite well log plots summarising lithology, stratigraphy, GA’s newly acquired biostratigraphic and geochemical data and petrophysical analysis, in conjunction with revised sequence interpretations. <p>The wells included in the well folio package are: <p>Anhalt 1, Barcoo 1 ST2, Bedout 1, Bruce 1, Cossigny 1, De Grey 1A ST1, Delambre 1, Depuch 1, East Mermaid 1B ST1, Hanover South 1, Huntsman 1, Keraudren 1. Lagrange 1, Minilya 1, Nebo 1, Omar 1, Phoenix 1, Phoenix 2, Phoenix South 1 ST1 ST2, Picard 1, Poissonnier 1, Roc 1, Steel Dragon 1 and Wigmore 1
-
This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.