From 1 - 10 / 11
  • The central North West Shelf has been the focus of a regional mapping program by Geoscience Australia targeting the Triassic succession. Resulting updates to the regional structural understanding are presented, showcasing variations in structural style across the region. The Triassic section is affected by fault sets with two predominant orientations across the study area: N-trending and NE-trending, with localised areas of NW-trending faulting. There is typically vertical separation of faulting between the upper Triassic and lower Triassic successions, resulting in different fault fabrics mapped on the top and base Triassic surfaces. In some areas major faults penetrate through the Mesozoic section and into the Paleozoic basement, forming features with significant displacement such as the Thouin Graben, Whitetail Graben, Naranco High, and the Barcoo Sub-basin half graben. Isochore maps reveal two Triassic depocentres separated by an area of thin Triassic extending from the inboard Bedout Sub-basin out to the western Rowley Sub-basin and NE Exmouth Plateau. This new mapping shows that there is a poor correlation between Triassic depocentres and existing basin boundaries, making it difficult to clearly describe regions of interest and their evolution. Greater integration of new structural insights into a regional structural framework is necessary to improve our understanding of the tectonostratigraphic evolution of the margin, and the stratigraphic and structural aspects of exploration risk. This abstract was submitted to/presented at the 2019 Australasian Exploration Geoscience Conference (AEGC 2019) (https://www.aig.org.au/aegc-2019-data-to-discovery/)

  • The Major Crustal Boundaries web service displays the synthesized output of more than 30 years of acquisition of deep seismic reflection data across Australia, where major crustal-scale breaks have been interpreted in the seismic reflection profiles, often inferred to be relict sutures between different crustal blocks. The widespread coverage of the seismic profiles now provides the opportunity to construct a map of major crustal boundaries across Australia.

  • <div>Conference abstract on seismic reflector orientation analysis from the Yilgarn Craton (Western Australia):</div> Interpretation of seismic data in hard rock areas is challenging due to lack of direct geological constraints from drilling and the more limited data available typically available from sparse 2-D profiles in comparison to hydrocarbon exploration surveys. Estimates of the 3D orientation of reflectors can help associate specific reflections, or regions of the crust, with geological structures mapped at the surface whose orientation and tectonic history are known. Here we present a method analogous to semblance velocity analysis that utilizes varying source-receiver azimuths to derive continuous estimates of 3-D reflector orientations along onshore 2-D reflection profiles. For each zero-offset time within a common depth point supergather, the semblance is calculated along 3-D travel time curves, and the dip and strike of the most coherent reflection is determined. Relative errors in these angles are derived from the range of travel time curves that have semblance values greater than a specified fraction, for example 90%, of the maximum. The potential of the method is illustrated using a section from line 10GA-YU1 from the Youanmi Terrane of the Yilgarn Craton in Australia in which the original field data have been replaced with synthetic in-line and cross-line reflections. Reflector orientations are generally well recovered where the range of available source-receiver azimuths is greater than 20o, but the method fails at lower ranges where the seismic line is almost linear, a behavior that is also observed in analysis of field data. When this approach is applied to data from the 2019 seismic survey around Kalgoorlie in the Eastern Goldfields, the orientations of both moderately dipping volcanic stratigraphy and faults are recovered. Integration of these local orientation attributes into an interpretation of migrated seismic data requires that the orientations also be migrated. We use a simple approach to the 2-D migration of these attributes that utilises the apparent dip of reflections on the unmigrated stack, and maps reflector strike, for example, to a short linear segment depending on its original position and a migration velocity. Deployment of off-line receivers during future seismic acquisition will allow the recording of a larger range of source-receiver azimuths that can produce more reliable estimates of these reflector attributes than is possible with the limited range of azimuths available from standard 2-D crooked-line acquisition. This Abstract was submitted/presented to the Target 2023 Conference 28 July (https://6ias.org/target2023/)

  • Following deep seismic reflection surveys on the Yilgarn and Pilbara cratons by Geoscience Australia with the Geological Survey of Western Australia and on the Superior Craton by the Canadian Lithoprobe program, these cratons are now some of the best surveyed Archean regions on Earth. We present seismic images that highlight how variations in crustal architecture relate to differences in Archean tectonic processes between cratons. All cratons are characterized by a mostly non-reflective 4–12 km-thick uppermost crust due to the presence of large granitoid plutons and gneissic domains. Localized regions of upper crustal seismic reflectivity are typically interpreted as supracrustal rocks and mafic sills or faults and shear zones. The middle and lower Archean crust contains variably complex geometries of relatively high amplitude reflections, though in some regions, such as the Eastern Goldfields Superterrane and the Abitibi Greenstone Belt, the lower crust appears less reflective than the middle crust. Crustal thicknesses vary from 30 km in the eastern Pilbara to 35–40 km across much of the Yilgarn and Superior, though thicknesses as great as 45–52 km occur locally in the latter two cratons. The characteristics of the Archean crust-mantle boundary, or Moho, which is commonly well-defined, differs between cratons, indicating significant variations in the tectonic processes that have driven the final stages of crustal evolution. Dipping reflections in the uppermost mantle linked to convergent crustal structures are interpreted as relict subduction scars. In the southern Superior Craton, Moho offsets and northdipping reflections in the middle and lower crust arose through successive underthrusting of Meso-Neoarchean island arcs, oceanic plateaux and microcontinental fragments, as they accreted against a pre-existing northern nucleus (e.g. North Caribou and Opatica terranes). Seismic reflection lines reveal a doubly vergent orogen above north-dipping mantle reflections that indicate subduction drive accretion. Post-orogenic crustal extension, which is inferred from crustal-scale normal shear zones and dropped greenstone belts, has not erased the original accretionary crustal architecture. In contrast, in the Yilgarn Craton interior, accretionary structures are less clear and there are no prominent offsets in the Moho. In the Youanmi Terrane, which represents the cratonic nucleus, a pervasive fabric of listric east-dipping mid-crustal reflections soles out into the upper part of subhorizontal lower crustal reflections. We interpret this reflective fabric to be the result of widespread crustal collapse during the late stage of craton evolution at c. 2.65–2.6 Ga that also produced subsidence of the upper crust. Though terrane boundaries can be identified in seismic data across the Eastern Goldfields Superterrane, these boundaries have commonly been modified by extension, which also overprinted any accretionary lower crustal structures, perhaps simultaneous with widespread intrusion of post-tectonic melts. Exhumation of moderately reflective, amphibolite to granulite facies crust in the Narryer Terrane above dipping mantle reflectors indicates that shortening along the northwestern edge of the Yilgarn Craton was subduction driven. In the eastern Pilbara Craton, shallowly dipping to subhorizontal reflections in the middle and lower crust preclude crustal-scale vertical tectonic movements and imply that the vertical displacements inferred from surface mapping were largely confined to the upper crust. <div>The abstract accompanies a talk the describes the architecture and and related tectonic processes of several Archean cratons based on reflection seismic interpretations. </div> This Abstract was submitted to & presented at the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. The first phase of the EFTF program (2016-2020) aimed to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential (Carr et al 2018). The South Nicholson Basin and immediate surrounding region is situated between Paleo-Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and McArthur Basin are well studied. By contrast, the adjacent South Nicholson region is less studied, and contains rocks that are mostly undercover, for which the basin evolution and resource potential is not well understood. To address this gap, the L210 South Nicholson Deep Crustal Seismic Survey was collected in 2017 in the region between the southern McArthur Basin to the Mount Isa western succession, crossing the South Nicholson Basin and Murphy Province, providing a fundamental data link across these regions (L210 South Nicholson Deep Crustal Seismic Reflection Survey). The primary aim of the survey was to investigate areas with a low measured gravity response in the region to determine whether they represent thick basin sequences, as is the case for the nearby prospective Beetaloo Sub-basin. The interpretation of this survey led to the discovery of a new basin, the Carrara Sub-basin, coinciding with a gravity low in the south-eastern South Nicholson Basin Region. This data set contains an exported set of XYZ points from interpreted horizons (Carr et al 2019) on the South Nicholson Seismic Survey (L210) in both two way time (TWT ms on PreSTM_17ga lines) and depth (m) re-interpreted on depth indexed PreSDM_17GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Carr, L.K., Southby, C., Henson, P., Costello, R., Anderson, J.R., Jarrett, A.J M., Carson, C.J., Gorton, J., Hutton, L.J., Troup, A., Williams, B., Khider, K., Bailey, A. & Fomin, T. 2019. Exploring for the Future: South Nicholson Basin geological summary and seismic interpretation. Record 2019/21, Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2019.021 Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A, Williams, B., Khider, K., Bailey, A.H.E., Fomin, T. 2020. South Nicholson Basin seismic interpretation. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/132029 L210 South Nicholson Deep Crustal Seismic Reflection Survey, NT and QLD, 2017. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/116881.

  • <div>The ‘Major crustal boundaries of Australia’ data set synthesises more than 40 years of acquisition of deep seismic reflection data across Australia, where major crustal-scale breaks, often inferred to be relict sutures between different crustal blocks, have been interpreted in the seismic reflection profiles. The widespread coverage of the seismic profiles now provides the opportunity to construct a map of major crustal boundaries across Australia. Starting with the locations of the crustal breaks identified in the seismic profiles, geological (e.g. outcrop mapping, drill hole, geochronology, isotope) and geophysical (e.g. gravity, aeromagnetic, magnetotelluric, passive seismic) data are used to map the crustal boundaries, in map view, away from the seismic profiles. For some of these boundaries, a high level of confidence can be placed on the location, whereas the location of other boundaries can only be considered to have medium or low confidence. In other areas, especially in regions covered by thick sedimentary successions, the locations of some crustal boundaries are essentially unconstrained. </div><div>The ‘Major crustal boundaries of Australia’ map shows the locations of inferred ancient plate boundaries, and will provide constraints on the three dimensional architecture of Australia. It allows a better understanding of how the Australian continent was constructed from the Mesoarchean through to the Phanerozoic, and how this evolution and these boundaries have controlled metallogenesis. It is best viewed as a dynamic dataset, which will need to be refined and updated as new information, such as new seismic reflection data, becomes available.</div><div><br></div>

  • <div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts&nbsp;(2023).&nbsp;Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity,&nbsp;Australian Journal of Earth Sciences,&nbsp;DOI:&nbsp;10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.

  • Interpretation of 2014–2015 deep crustal seismic reflection and magnetotelluric data has revised the architecture and geodynamic framework of western Queensland, with implications for the assembly and dispersal of the supercontinents Nuna, Rodinia and Gondwana. In the Mount Isa Province, crustal-scale boundaries of the Leichhardt River Domain, Kalkadoon-Leichhardt Domain and Eastern Subprovince are mapped in the third dimension. The Leichhardt River and Kalkadoon-Leichhardt domains have similar Nd isotopic T 2DM model ages to provinces to the west, indicating they were part of ancestral North Australian Craton (NAC); the Eastern Subprovince is a separate terrane, with the Pilgrim Fault a collisional suture. The Gidyea Suture Zone separates the Mount Isa Province from the subsurface Numil Seismic Province. To the east, the west-dipping Yappar Fault separates east-dipping structures in the west from west-dipping structures in the east, forming a classic doubly vergent orogen within the upper plate of a convergent margin. The northwestern boundary of the Bernfels Seismic Province, the Kynuna Fault, truncates the Gidyea Suture Zone, implying this seismic province was welded to the NAC prior to initial deposition of the Etheridge Province. The Cork Fault truncates the north-south grain of the Mount Isa Province; the easternmost part of the NAC has been excised, presumably during breakup of Nuna. The subsurface Brighton Downs Seismic Province, formerly part of the northern Thomson Orogen, is a discrete seismic province, located between the NAC and the Thomson Orogen, and welded to the NAC during the accretion of Rodinia. Basement to the Thomson Orogen is a collage of microplates, accreted to the Brighton Downs Seismic Province during the assembly of Gondwana. By 530 Ma, eastern Australia faced an open Pacific Ocean, with the Thomson Orogen in a backarc setting. Thus, northeastern Australia contains a record of repeated continental accretion and breakup over at least three supercontinent cycles. <b>Citation: </b>Russell J. Korsch, Michael P. Doublier, Dominic D. Brown, Janelle M. Simpson, Andrew J. Cross, Ross D. Costelloe, Wenping Jiang, Crustal architecture and tectonic development of western Queensland, Australia, based on deep seismic reflection profiling: Implications for Proterozoic continental assembly and dispersal, <i>Tectonophysics</i>, Volume 878, 2024, 230302, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2024.230302.

  • During 2021–2024 Geoscience Australia conducted regional seismic mapping across the offshore Otway Basin that extended into the frontier deep-water region. This work was part of a broader pre-competitive study undertaken in support of petroleum exploration. Seismic horizons and faults were interpreted on three regional data sets, including: over 18 000 line-km of new and reprocessed data compiled for the 2020 offshore Otway Basin seismic program; over 40 000 line-km of legacy 2D seismic data; and the Otway 3D Megamerge dataset. This digital dataset (publication date 9 September 2024) updates and replaces a previously released dataset (publication date 16 May 2022). This updated dataset includes 8 surface grids and 11 isochron grids generated from the following seismic horizons (in ascending stratigraphic order); MOHO (Mohorovičić discontinuity), TLLCC (top laminated lower continental crust), Base (base Crayfish Supersequence), EC2 (base Eumeralla Supersequence), LC1 (base Shipwreck Supersequence), LC1.2 (base LC1.2 Sequence), LC2 (base Sherbrook Supersequence), and T1 (base Wangerrip Supersequence). Fault polygons created for all surfaces (except for MOHO, TLLCC, and LC1.2) are also included in the dataset. Maps generated from the dataset depict deep-water Cretaceous depocentres, and trends in crustal thinning and rifting during the Cretaceous. This revised dataset has underpinned updates to regional structural elements, including a revision of the boundary between the Otway and Sorell basins.

  • The first phase of the Australian Government's Exploring for the Future (EFTF) was a multi-year (2016-2020) $100.5 million initiative to increase northern Australia's desirability as a destination for industry investment to stimulate ‘greenfield’ resource exploration. In order to support this fundamental objective of the EFTF program, Geoscience Australia conducted acquisition of a diverse range of new precompetitive datasets across northern Australia, focussing on regions of unrecognised mineral, energy and groundwater resource potential. The Barkly 2D Deep Crustal Reflection Seismic Survey (L212) was acquired in 2019 as a major objective of the EFTF program in partnership with, and co-funded by, the NT Government under the Resourcing the Territory initiative. The Barkly Seismic Survey extends from the newly discovered Carrara Sub-basin in the South Nicholson Basin region to the south-eastern margins of the Beetaloo Sub-basin (Fomin, T., et al. 2019). The Barkly Seismic Survey images interpreted Paleoproterozoic to Mesoproterozoic successions extending from the Carrara Sub-basin to the highly prospective Beetaloo Sub-basin of the McArthur Basin. These successions are concealed by a persistent cover of up to 600 m of Paleozoic Georgina Basin sediments. Interpretation of the Barkly Seismic Survey established three informal geological domains, each defined by structural elements and/or basin characteristics (Southby et al, 2021). This data set contains an exported set of XYZ points from interpreted horizons (Southby et al 2022,) on the Barkly Seismic Survey (L212) in both two way time (TWT ms on PreSTM_19ga lines) and depth (m) re-interpreted on depth indexed PreSDM_19GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Fomin, T., Costelloe, R.D., Holzschuh, J. 2019. L212 Barkly 2D Seismic Survey. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/132890 Southby, C., Rollet, N., Carson, C., Carr, L., Henson, P., Fomin, T., Costelloe, R., Doublier, M., Close, D. 2021. The Exploring for the Future 2019 Barkly Reflection Seismic Survey: Key discoveries and implication for resources. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/145107 Southby, C., Carson, C.J., Fomin, T., Rollet, N., Henson, P.A., Carr, L.K., Doublier, M.P., Close, D. 2022. Exploring for the Future - The 2019 Barkly Reflection Seismic Survey (L212). RECORD: 2022/009. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2022.009