From 1 - 3 / 3
  • This image is derived from gravity observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The image shows isostatic residual gravity anomalies over onshore continental Australia. The data used in this image has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. The isostatic corrections were based on the assumption that topographic loads are compensated at depth by crustal roots following the Airy-Heiskanen isostatic principle. A crustal density of 2670 kg/m3 was used for the isostatic correction, with an assumed density contrast between the crust and mantle of 400 kg/m3. An initial average depth to Moho at sea level of 37 km was used in the calculation. The isostatic corrections were then applied to the Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the isostatic residual gravity anomaly grid. The Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016 has been image enhanced and displayed as a hue-saturation-intensity (HSI) image with sun shading from the northeast to create this product.

  • This grid is derived from gravity observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The grid shows isostatic residual gravity anomalies over onshore continental Australia. The data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. The isostatic corrections were based on the assumption that topographic loads are compensated at depth by crustal roots following the Airy-Heiskanen isostatic principle. A crustal density of 2670 kg/m3 was used for the isostatic correction, with an assumed density contrast between the crust and mantle of 400 kg/m3. An initial average depth to Moho at sea level of 37 km was used in the calculation. The isostatic corrections were then applied to the Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016.

  • The main part of this map is a Hue-Saturation-Intensity (HSI) image of De-trended Global Isostatic Residual Gravity data (DGIR) based on the B Series of the 2019 Australian National Gravity Grids. This series of grids represent the combination of 1.4 million ground gravity observations stored in the Australian National Gravity Database (ANGD) as of September 2019; 345,000 line km of Airborne Gravity and 106,000 line km of gravity gradiometry data in the National Australian Geophysical Database (NAGD), and the Global Gravity Grid developed at Scripps Institution of Oceanography, University of California at San Diego using data from the United States SIO, NOAA and NGA. The ground and airborne gravity data have been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940’s to the present day. The shading of the image is from the northwest and the colour scale is linear from -500 µm.s-2 (blue) to +500 µm.s-2 (red).