From 1 - 10 / 42
  • With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.

  • <div>Australia has been supporting 13 Pacific Island countries (PICs) to measure, record and analyse long-term sea level and land motion for over 25 years. This is known as the Pacific Sea Level and Geodetic Monitoring (PSLGM) project which is funded by Australian Aid under the Climate and Oceans Support Program in the Pacific (COSPPac). </div><div>The sea level data is collected continuously at one or two tide gauges in each of the 13 PICs. The land motion data is collected continuously at one or two Global Navigation Satellite System (GNSS) stations in each of the 13 PICs. The height difference between the tide gauges and GNSS stations is observed once every 18 months (approximately). The data is then analysed to produce sea level information-based products (e.g. tide calendars) and to inform about motion of the land (e.g. for coastal infrastructure planning). </div><div>The PSLGM project involves Australian science agencies (Bureau of Meteorology (Bureau) and Geoscience Australia (GA)) working in partnership with regional organisations (Pacific Community (SPC)), and Pacific government ministries (meteorology and land and survey departments).</div><div><br></div><div>This GA Record reports findings regarding the absolute vertical rate of movement (i.e. the rate at which the land is moving up or down with respect to the centre of the Earth) of 13 Pacific Island Countries tide gauges over the period 2003 – 2022 based on the analysis of Global Navigation Satellite System (GNSS) data and levelling data.&nbsp;&nbsp;</div><div><br></div>

  • The Australian Bureau of Meteorology (BoM), Geoscience Australia (GA) and the Pacific Community (SPC) work together on the Australian Aid funded Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The project is focused on determining the long-term variation in sea level through observation and analysis of changes in the height of the land (using Global Navigation Satellite System (GNSS) data) and changes in the sea level (using tide gauges managed and operated by the BoM. It is the role of GA and SPC to provide information about ‘absolute’ movement of the tide gauge (managed by BoM) using GNSS to continuously monitor land motion and using levelling (SPC) to measure the height difference between the tide gauge and GNSS pillar every 18 months. Land movement caused by earthquakes, subsidence and surface uplift have an important effect on sea level observations at tide gauges. For example, a tide gauge connected to a pier which is subsiding at a rate of 5 mm per year would be observed as a rate of 5 mm per year of sea level rise at the tide gauge. Because of this, it is important to measure, and account for, the movement of land when measuring ‘absolute’ sea level variation - the change in the sea level relative to the centre of the Earth. Relative sea level variation on the other hand is measured relative to local buildings and landmass around the coastline. Geoscience Australia’s work enables more accurate 'absolute' sea level estimates by providing observations of land motion which can be accounted for by BoM when analysing the tide gauge data. This report provides the results of the GNSS monitoring survey & high precision level survey completed between the Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) tide gauge and the GNSS Continuously Operation Reference Station (CORS) in Nukualofa, Tonga from 7th to 19th July 2019. It also provides an updated height of the tide gauge derived from GNSS time series analysis and precise levelling observations.

  • Probabilistic earthquake hazard maps were prepared for the Fiji Islands. Damage has been caused by Fiji earthquakes around 1850, in 1884, 1902, 1919, 1932 (twice), 1953 and 1979. No previous assessment had produced a comprehensive description of the earthquake hazard in Fiji and the present study was initiated in 1990 when the author was attached to the Mineral Resources Department, Fiji. Collection and analysis of data continued at MRD until 1992 and the study was completed at the Australian Geological Survey Organisation in 1993-1997. The aim of the study was to produce probabilistic earthquake hazard maps which can be used in the National Building Code for Fiji, for design of special structures, for planning, for emergency management and for risk management. Few, if any, similar studies have been undertaken in the seismically active Southwest Pacific.

  • On the 30th September 2009 a magnitude 7.6 earthquake struck West Sumatra in the Padang and Pariaman regions. It caused widespread damage to buildings and resulted and an estimated 1,117 fatalities. Thankfully the event was not accompanied by a tsunami that could have had additional devastating impacts and a greatly increased mortality. Under its mandate the AIFDR responded to the earthquake event with the objective of deriving an understanding of the factors that had contributed to outcome. It supported a team of Indonesian and international engineers and scientists who collected and analysed damage information that could subsequently be used for future disaster risk reduction in West Sumatra and Indonesia more broadly. The activity was jointly led by the Centre for Disaster Mitigation at the Institut Teknologi Bandung (ITB) and Geoscience Australia. This report provides a background to the region, describes the nature of the earthquake and its impacts, details the survey activity and outlines the significant outcomes that has come from it. Importantly, it makes several recommendations to assist in the regional reconstruction after the event and to guide future development in the Padang region and Indonesia more generally.

  • Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z

  • The Australian Bureau of Meteorology (BoM), Geoscience Australia (GA) and the Pacific Community (SPC) work together on the Australian Aid funded Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The project is focused on determining the long-term variation in sea level through observation and analysis of changes in the height of the land (using Global Navigation Satellite System (GNSS) data) and changes in the sea level (using tide gauges managed and operated by the BoM. It is the role of GA and SPC to provide information about ‘absolute’ movement of the tide gauge (managed by BoM) using GNSS to continuously monitor land motion and using levelling (SPC) to measure the height difference between the tide gauge and GNSS pillar every 18 months. Land movement caused by earthquakes, subsidence and surface uplift have an important effect on sea level observations at tide gauges. For example, a tide gauge connected to a pier which is subsiding at a rate of 5 mm per year would be observed as a rate of 5 mm per year of sea level rise at the tide gauge. Because of this, it is important to measure, and account for, the movement of land when measuring ‘absolute’ sea level variation - the change in the sea level relative to the centre of the Earth. Relative sea level variation on the other hand is measured relative to local buildings and landmass around the coastline. Geoscience Australia’s work enables more accurate 'absolute' sea level estimates by providing observations of land motion which can be accounted for by BoM when analysing the tide gauge data. This report provides the results of the GNSS monitoring survey & high precision level survey completed between the Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) tide gauge and the GNSS Continuously Operation Reference Station (CORS) in Port Vila, Vanuatu from 4th to 13th March 2019 It also provides an updated height of the tide gauge derived from GNSS time series analysis and precise levelling observations.

  • The Australian Bureau of Meteorology (BoM), Geoscience Australia (GA) and the Pacific Community (SPC) work together on the Australian Aid funded Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The project is focused on determining the long-term variation in sea level through observation and analysis of changes in the height of the land (using Global Navigation Satellite System (GNSS) data) and changes in the sea level (using tide gauges managed and operated by the BoM. It is the role of GA and SPC to provide information about ‘absolute’ movement of the tide gauge (managed by BoM) using GNSS to continuously monitor land motion and using levelling (SPC) to measure the height difference between the tide gauge and GNSS pillar every 18 months. Land movement caused by earthquakes, subsidence and surface uplift have an important effect on sea level observations at tide gauges. For example, a tide gauge connected to a pier which is subsiding at a rate of 5 mm per year would be observed as a rate of 5 mm per year of sea level rise at the tide gauge. Because of this, it is important to measure, and account for, the movement of land when measuring ‘absolute’ sea level variation - the change in the sea level relative to the centre of the Earth. Relative sea level variation on the other hand is measured relative to local buildings and landmass around the coastline. Geoscience Australia’s work enables more accurate 'absolute' sea level estimates by providing observations of land motion which can be accounted for by BoM when analysing the tide gauge data. This report provides the results of the GNSS monument monitoring survey & high precision level survey completed between the Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) tide gauge and the GNSS Continuously Operation Reference Station (CORS) in Majuro, Marshall Islands from 4th – 11th February 2020. It also provides an updated height of the tide gauge derived from GNSS time series analysis and precise levelling observations.

  • Archive of the data and outputs from the Assessment of Tropical Cyclone Risk in the Pacific Region project. See GA record 76213.

  • Historical reports of earthquake effects from the period 1681 to 1877 in Java, Bali and Nusa Tenggara are used to independently test ground motion predictions in Indonesia’s 2010 national probabilistic seismic hazard assessment (PSHA). Assuming that strong ground motion occurrence follows a Poisson distribution, we cannot reject Indonesia’s current PSHA for key cities in Java at 95% confidence. However, the results do suggest that seismic hazard may be underestimated for the megacity Jakarta. Ground motion simulations for individual large damaging events are used to identify plausible source mechanisms, providing insights into the major sources of earthquake hazard in the region and possible maximum magnitudes for these sources. The results demonstrate that large intraslab earthquakes have been responsible for major earthquake disasters in Java, including a ~Mw 7.5 intraslab earthquake near Jakarta in 1699 and a ~Mw 7.8 event in 1867 in Central Java. The results also highlight the potential for large earthquakes to occur on the Flores Thrust. We require an earthquake with Mw 8.4 on the Flores Thrust to reproduce tsunami observation from Sulawesi and Sumbawa in 1820. Furthermore, large shallow earthquakes (Mw > 6) have occurred in regions where active faults have not been mapped identifying the need for further research to identify and characterize these faults for future seismic hazard assessments. <b>Citation:</b> Jonathan Griffin, Ngoc Nguyen, Phil Cummins, Athanasius Cipta; Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. <i>Bulletin of the Seismological Society of America </i>2018; 109 (1): 43–65. doi: https://doi.org/10.1785/0120180085