From 1 - 10 / 42
  • On 6th July 2006, an intense swarm of earthquake activity began in the Sulu Range, Central New Britain, Papua New Guinea. The earthquakes were felt almost every one to two minutes, 24 hours a day, with modified Mercalli intensities of MM1 to MM4. They were accompanied by unusual vigorous activity in the hot springs southwest of the Sulu Range. Fearing a possible eruption and tsunami, about 1000 locals were evacuated.

  • Hot emissions of mainly sulphur dioxide and carbon dioxide took place from a mound in Koranga open cut, near Wau, following a landslide at the end of May, 1967. Rocks of the Holocene volcano, Koranga, are exposed in the open cut. The emissions lasted about three months, and ceased on 13 August after another landslide removed the active mound. During the period of activity, recorded temperatures ranged up to 680°C; no anomalous seismic or tilt phenomena were recorded. The cause of the activity is not known, but it is thought that the high temperatures and gases may have been the result of the spontaneous combustion of reactive sulphides and carbonaceous material present in the altered rocks of Koranga volcano.

  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain – Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. <b>Citation:</b> Ghasemi, H., Cummins, P., Weatherill, G. <i>et al.</i> Seismotectonic model and probabilistic seismic hazard assessment for Papua New Guinea. <i>Bull Earthquake Eng, </i><b>18</b>, 6571–6605 (2020). https://doi.org/10.1007/s10518-020-00966-1

  • Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • <div>The city of Lae is Papua New Guinea (PNG)’s second largest, and is the home of PNG’s largest port. Here, a convergence rate of ~50 mm/yr between the South Bismarck Plate and the Australian Plate is accommodated across the Ramu-Markham Fault Zone (RMFZ). The active structures of the RMFZ are relatively closely spaced to the west of Lae. However, the fault zone bifurcates immediately west of the Lae urban area, with one strand continuing to the east, and a second strand trending southeast through Lae City and connecting to the Markham Trench within the Huon Gulf. </div><div>The geomorphology of the Lae region relates to the interaction between riverine (and limited marine) deposition and erosion, and range-building over low-angle thrust faults of the RMFZ. Flights of river terraces imply repeated tectonic uplift events; dating of these terraces will constrain the timing of past earthquakes and associated recurrence intervals. Terrace riser heights are typically on the order of 3 m, indicating causative earthquake events of greater than magnitude 7. </div><div>Future work will expose the most recently active fault traces in trenches to assess single event displacements, and extend the study to the RMFZ north of Nadzab Airport. These results will inform a seismic hazard and risk assessment for Lae city and surrounding region.</div> Presented at the 2023 Australian Earthquake Engineering Society (AEES) Conference

  • The Australian Bureau of Meteorology (BoM), Geoscience Australia (GA) and the Pacific Community (SPC) work together on the Australian Aid funded Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The project is focused on determining the long-term variation in sea level through observation and analysis of changes in the height of the land (using Global Navigation Satellite System (GNSS) data) and changes in the sea level (using tide gauges managed and operated by the BoM. It is the role of GA and SPC to provide information about ‘absolute’ movement of the tide gauge (managed by BoM) using GNSS to continuously monitor land motion and using levelling (SPC) to measure the height difference between the tide gauge and GNSS pillar every 18 months. Land movement caused by earthquakes, subsidence and surface uplift have an important effect on sea level observations at tide gauges. For example, a tide gauge connected to a pier which is subsiding at a rate of 5 mm per year would be observed as a rate of 5 mm per year of sea level rise at the tide gauge. Because of this, it is important to measure, and account for, the movement of land when measuring ‘absolute’ sea level variation - the change in the sea level relative to the centre of the Earth. Relative sea level variation on the other hand is measured relative to local buildings and landmass around the coastline. Geoscience Australia’s work enables more accurate 'absolute' sea level estimates by providing observations of land motion which can be accounted for by BoM when analysing the tide gauge data. This report provides the results of the GNSS monitoring survey & high precision level survey completed between the Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) tide gauge and the GNSS Continuously Operation Reference Station (CORS) in Yaren, Nauru from 24th to 29th October 2019. It also provides an updated height of the tide gauge derived from GNSS time series analysis and precise levelling observations.

  • The Government of Indonesia has committed to deploying a network of 500 strong-motion sensors throughout the nation. The data from these sensors have the potential to provide critical near-real-time information on the level of ground shaking and potential impact from Indonesian earthquakes near communities. We describe the implementation of real-time ‘ShakeMaps’ within Indonesia's Agency of Meteorology, Climatology and Geophysics (BMKG). These ShakeMaps are intended to underpin real-time earthquake situational awareness tools. The use of the new strong-motion network is demonstrated for two recent earthquakes in northern Sumatra: the 2 July 2013 Mw 6.1 Bener Meriah, Sumatra and the 10 October 2013 Mw 5.4 Aceh Besar earthquakes. The former earthquake resulted in 35 fatalities, with a further 2400 reported injuries. The recently integrated ShakeMap system automatically generated shaking estimates calibrated by BMKG's strong-motion network within 7 min of the Bener Meriah earthquake's origin, which assisted the emergency response efforts. Recorded ground motions are generally consistent with theoretical models. However, more analysis is required to fully characterize the attenuation of strong ground motion in Indonesia.

  • <div>Australia has been supporting 13 Pacific Island countries (PICs) to measure, record and analyse long-term sea level and land motion for over 25 years. This is known as the Pacific Sea Level and Geodetic Monitoring (PSLGM) project which is funded by Australian Aid under the Climate and Oceans Support Program in the Pacific (COSPPac). </div><div>The sea level data is collected continuously at one or two tide gauges in each of the 13 PICs. The land motion data is collected continuously at one or two Global Navigation Satellite System (GNSS) stations in each of the 13 PICs. The height difference between the tide gauges and GNSS stations is observed once every 18 months (approximately). The data is then analysed to produce sea level information-based products (e.g. tide calendars) and to inform about motion of the land (e.g. for coastal infrastructure planning). </div><div>The PSLGM project involves Australian science agencies (Bureau of Meteorology (Bureau) and Geoscience Australia (GA)) working in partnership with regional organisations (Pacific Community (SPC)), and Pacific government ministries (meteorology and land and survey departments).</div><div><br></div><div>This GA Record reports findings regarding the absolute vertical rate of movement (i.e. the rate at which the land is moving up or down with respect to the centre of the Earth) of 13 Pacific Island Countries tide gauges over the period 2003 – 2022 based on the analysis of Global Navigation Satellite System (GNSS) data and levelling data.&nbsp;&nbsp;</div><div><br></div>

  • Papua New Guinea (PNG) is situated at the edge of the Pacific “ring of fire” and is exposed to frequent large earthquakes and volcanic eruptions. Earthquakes in PNG, such as 2018 Hela Province event (M7.5), continue to cause loss of life and widespread damage to buildings and infrastructure. Given its high seismic hazard, PNG would benefit from a dense seismic monitoring network for rapid (near real-time), as well as long-term, earthquake hazard and risk assessment. Geoscience Australia (GA) is working with technical agencies of PNG Government to deliver a Department of Foreign Affairs and Trade (DFAT) funded technical disaster risk reduction (DRR) program to increase community resilience on the impact of natural hazards and other secondary hazards. As part of this program, this study explores the feasibility of establishing a low-cost, community-based seismic network in PNG by first verifying the performance of the low-cost Raspberry Shake 4D seismograph, which includes a three-component strong-motion MEMs accelerometer and one (vertical) short-period geophone. A Shake device was deployed at the Rabaul Volcanological Observatory (RVO) for a period of one month (May 2018), relaying data in real-time via a 3G modem. To assess the performance of the device, it was co-located with global seismic network-quality instruments that included a three-component broadband seismometer and a strong motion accelerometer operated by GA and RVO, respectively. A key challenge for this study was the rather poor data service by local telecommunication operators as well as frequent power outages which caused repeated data gaps. Despite such issues, the Shake device successfully recorded several earthquakes with magnitudes as low as mb 4.0 at epicentral distances of 600 km, including earthquakes that were not reported by international agencies. The time-frequency domain comparisons of the recorded waveforms with those by the permanent RVO instruments reveal very good agreement in a relatively wide frequency range of 0.1-10 Hz. Based on the estimated noise model of the Shake device (seismic noise as well as instrument noise), we explore the hypothetical performance of the device against typical ground-motion amplitudes for various size earthquakes at different source-to-site distances. Presented at the 2018 Australian Earthquake Engineering Society (AEES) Conference