From 1 - 10 / 38
  • <div>This report presents thermal property data (thermal conductivity data, calculated heat production data, and calculated surface heat flow) from the deep (1751 m) stratigraphic drill hole, NDI Carrara 1. Thermal conductivity analyses were undertaken at the University of Melbourne. Heat production values were calculated from existing whole rock geochemical data. Surface heat flow was determined using the laboratory thermal conductivity data together with in situ downhole temperature data collected previously.</div>

  • <div>This study was commissioned by Geoscience Australia (GA) to produce a report on methane adsorption and desorption of select samples from the deep stratigraphic drill hole NDI Carrara 1, located in the Proterozoic Carrara Sub-basin in the Northern Territory. Plugs were taken from depths of interest and analysed via adsorption and desorption isotherm testing at the CSIRO laboratories in Clayton, Victoria. </div>

  • <div>NDI Carrara 1 is a 1750 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia under the Exploring for the Future program and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected Cambrian and Proterozoic sediments consisting of organic-rich black shales and a thick sequence of interbedded black shales and silty sandstones with hydrocarbon shows. A comprehensive analytical program carried out by Geoscience Australia on the recovered core samples from 283 m to total depth at 1751&nbsp;m provides critical data for calibration of burial and thermal history modelling.</div><div>Using data from this drilling campaign, burial and thermal history modelling was undertaken to provide an estimate of the time-temperature maxima that the sub-basin has experienced, contributing to an understanding of hydrocarbon maturity. Proxy kerogen kinetics are assessed to estimate the petroleum prospectivity of the sub-basin and attempt to understand the timing and nature of hydrocarbon generation. Combined, these newly modelled data provide insights into the resource potential of this frontier Proterozoic hydrocarbon province, delivering foundational data to support explorers across the eastern Northern Territory and northwest Queensland.</div> <b>Citation:</b> Palu Tehani J., Grosjean Emmanuelle, Wang Liuqi, Boreham Christopher J., Bailey Adam H. E. (2023) Thermal history of the Carrara Sub-basin: insights from modelling of the NDI Carrara 1 drill hole. <i>The APPEA Journal</i><b> 63</b>, S263-S268. https://doi.org/10.1071/AJ22048

  • Six gas samples were collected from the possum belly (PB) of the shaker assembly during the drilling of NDI Carrara 1. The sample depths ranged from 1187 m to 1360 m and were from organic-rich Proterozoic rock units. The molecular composition and carbon and hydrogen isotope compositions of the individual PB gas components (methane, ethane, propane and carbon dioxide) suggest that the gases were sourced from local, thermally mature, organic-rich shales and siltstones. After taking into account the air and excess nitrogen content in the PB gases, the helium content of the PB gases is low while the molecular hydrogen contents is up to over a 100 times higher than the helium content. Both molecular hydrogen and helium likely have a major radiogenic origin. Based on the results, there is potential for a yet-to-be quantified unconventional hydrocarbon resource in the vicinity of the NDI Carrara 1 well.

  • The recently drilled deep stratigraphic drill hole NDI Carrara 1 penetrates the carbonate formations of the Cambrian Georgina Basin as well as the underlying Proterozoic successions of the Carrara Sub-basin. The Proterozoic section consists predominantly of tight shales, siltstones, and calcareous clastic rocks. This study aims to assess the petrophysical properties of the Proterozoic shales using conventional wireline logs. Gamma ray and neutron-density crossplots were used to calculate shale volume fraction, and neutron-density crossplots were applied to compute the total and effective porosity of non-shale rocks. Total organic carbon (TOC) content was interpreted using artificial neural networks, and was used to derive the volume of organic matter was converted from TOC content. Bulk density logs were corrected by removing the kerogen effect in the organic-rich shales. Matrix and kerogen densities were obtained by correlating the reciprocal of grain density with TOC content. Total shale porosity was calculated from kerogen-corrected density porosity and organic porosity. Effective porosity was estimated by removing the shaliness effect. Water saturation was derived using the Simandoux equation. The Proterozoic Lawn Hill Formation in NDI Carrara 1 exhibits petrophysical properties that indicate a favourable potential for shale gas resources. Herein, we define three informal intervals within the intersected Lawn Hill Formation; the upper Lawn Hill, the Lawn Hill shale, and the lower Lawn Hill. The net shale thickness of the upper Lawn Hill and Lawn Hill shale intervals are 165 m and 149 m, respectively. The increased TOC content and organic porosity of the upper Lawn Hill and Lawn Hill shale implies higher adsorbed gas content potential. The Lawn Hill shale has the highest gas saturation (average of 31.1%) and the highest potential for free gas content, corresponding to the highest methane responses in logged mud gas profiles. This extended Abstract was submitted to/presented at the Australasian Exploration Geoscience Conference (AEGC) 2023, Brisbane (https://2023.aegc.com.au/)

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara&nbsp;1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. The deep stratigraphic drill hole, NDI Carrara 1 (~1751 m), was completed in December 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This contractor report (FIT - Schlumberger) presents hydrocarbon and aqueous fluid inclusion petrology and data (micro-thermometry, salinities etc.) on four hydrocarbon-bearing calcite veins sampled from NDI Carrara 1 between 762.56-763.60 m depth, (under contract to, and fully funded by, Geoscience Australia as part of the Exploring for the Future program).