From 1 - 10 / 27
  • <div>The Darling-Curnamona-Delamerian (DCD) project focused on the covered portion of the Delamerian orogen, situated in the south-eastern mainland states of Australia.&nbsp;The aims of the project were to develop a greater understanding of the geodynamic history of the Delamerian Orogen, characterise known magmatic-hydrothermal mineral systems, and assess mineral potential for a suite of minerals including copper (Cu), gold (Au), and nickel (Ni), and critical minerals like platinum-group elements (PGEs) and rare-earth elements (REEs). </div><div>Here, we collate whole rock geochemistry data from new and legacy samples of mafic to intermediate magmatic rocks of the Loch Lilly-Kars Belt in order to determine the likely source of these magmas and constrain the prevailing tectonic setting during their emplacement. We apply multi-elemental diagrams and various elemental discrimination diagrams to characterise various groups of magmatic rocks in these belts, taking into account their geographic affinity and new geochronological data (e.g. Mole et al., 2023; Mole et al., 2024). The geochemical characteristics of these groups and the implications for the tectonic setting into which they were emplaced are discussed. Comparisons are made with potentially similar magmatic rocks of the&nbsp;Koonenberry Belt and Grampians-Stavely Zone. Results from this study have significant implications for the tectonic setting in which the Loch Lilly-Kars Belt developed, and hence also the mineral potential of the Belt. </div><div> </div>

  • <div>This Record presents new zircon U-Pb geochronological data, obtained via Sensitive High Resolution Ion Microprobe (SHRIMP), for 12 samples of igneous rocks from central and southern New South Wales, as part of an ongoing Geochronology Project conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement. Eight samples were selected to better understand the geological evolution and mineralisation history of areas prioritised for investigation by the MinEx Co-operative Research Centre (MinEx CRC) under its National Drilling Initiative (NDI) program. Three samples are from the northern Molong Volcanic Belt east of Dubbo (‘MXDU’), and five are from the eastern Lachlan Orogen near Forbes (‘MXFO’). The remaining four samples are from the central Lachlan Orogen in southern NSW, in support of GSNSW’s East Riverina mapping program (‘ERIV’). The results herein correspond to U-Pb SHRIMP zircon analyses undertaken by the GSNSW-GA Geochronology Project during the July 2020–June 2021 reporting period. All quoted uncertainties are 95% confidence intervals.</div> <b>Bibliographic reference: </b> Jones, S.L., Bodorkos, S., Eastlake, M.A.S., Campbell, L.M., Hughes, K.S., Blevin, P.L. and Fitzherbert, J.A., 2023. <i>New SHRIMP U-Pb zircon ages from the Lachlan Orogen, NSW: Dubbo, Forbes and East Riverina areas, July 2020–June 2021. </i>Record 2023/36, Geoscience Australia, Canberra. Report GS2023/0017, Geological Survey of New South Wales, Maitland. https://doi.org/10.26186/147971

  • <div>This report presents thermal property data (thermal conductivity data, calculated heat production data, and calculated surface heat flow) from the deep (1751 m) stratigraphic drill hole, NDI Carrara 1. Thermal conductivity analyses were undertaken at the University of Melbourne. Heat production values were calculated from existing whole rock geochemical data. Surface heat flow was determined using the laboratory thermal conductivity data together with in situ downhole temperature data collected previously.</div>

  • <div>This study was commissioned by Geoscience Australia (GA) to produce a report on methane adsorption and desorption of select samples from the deep stratigraphic drill hole NDI Carrara 1, located in the Proterozoic Carrara Sub-basin in the Northern Territory. Plugs were taken from depths of interest and analysed via adsorption and desorption isotherm testing at the CSIRO laboratories in Clayton, Victoria. </div>

  • <div>A multi-disciplinary program of geological and geophysical data collection and integration, focussed on the Delamerian Orogen, was undertaken as part of Geoscience Australia’s Exploring for the Future (EFTF) program and the Mineral Exploration Cooperative Research Centres (MinEx CRC) National Drilling Initiative (NDI).&nbsp;In this study, we integrate learnings from these data with existing geological and geophysical data to refine the basement geology of the Loch Lilly-Kars Belt, Lake Wintlow Belt and Wilcannia High. Our interpretation provides a revised geological framework for a frontier exploration region in the Delamerian Orogen.&nbsp;This product includes ESRI shape files and layer files, accompanying notes, and several appendices containing new detrital zircon U-Pb geochronology data from the map area as well as the broader Delamerian Orogen.</div>

  • As part of Geoscience Australia's Exploring for the Future program, the East Tennant region, which is centred on the Barkly Roadhouse in the Northern Territory, was identified as having favourable geological and geophysical indicators of mineral systems potential. Potentially prospective stratigraphy in the East Tennant region is completely concealed beneath Mesoproterozoic to Quaternary cover sequences. Prior to 2020 basement rocks in the East Tennant region were only known from a handful of legacy boreholes, supported by geophysical interpretation. In order to test geophysical interpretations and obtain additional samples of basement rocks for detailed analysis, a stratigraphic drilling campaign was undertaken in the East Tennant region as part of the MinEx CRC’s National Drilling Initiative. Ten stratigraphic boreholes were drilled through the cover sequences and into basement for a total of nearly 4000 m, including over 1500 m of diamond cored basement rocks to be used for scientific purposes. Inorganic geochemical samples from East Tennant National Drilling Initiative boreholes were taken to characterise cover and basement rocks intersected during drilling. Two sampling approaches were implemented based on the rocks intersected: 1) Borehole NDIBK04 contained localised sulphide mineralisation and elevated concentrations of several economically-significant elements in portable X-ray fluorescence data. In order to understand the geochemical variability and distribution of elements important for mineral system characterisation, the entire basement interval was sampled at nominal one metre intervals. This spacing was reduced to between 0.5 and 0.25 m from 237 m to 263 m to better understand a more intense zone of mineralisation, and 2) Samples from boreholes NDIBK01, NDIBK02, NDIBK03, NDIBK05, NDIBK06, NDIBK07, NDIBK08, NDIBK09 and NDIBK10 were selected to capture lithological and geochemical variability to establish bulk rock geochemical compositions for further interpretation. Attempts were made to sample representative, lithologically consistent intervals. A total of 402 samples were selected for analysis. Sample preparation was completed at Geoscience Australia and Bureau Veritas, with all analyses performed by Bureau Veritas in Perth. All samples were submitted for X-ray fluorescence (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), FeO determination, and loss on ignition (LOI). Samples from borehole NDIBK04 also underwent total combustion C and S, and Pb collection fire assay by ICP-MS for determination of Au, Pt and Pd concentrations. This data release presents inorganic geochemistry data acquired on rock samples from the ten East Tennant National Drilling Initiative boreholes.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara&nbsp;1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract </div><div><br></div><div><strong>Short Abstract: </strong>The Delamerian Orogen, with a length of ~1000 km on mainland Australia and a proven potential to host mineralisation, represents an evolving exploration opportunity. However, uncertainty surrounding the age and tectonic setting of the orogen is a barrier to confident exploration in frontier covered regions, such as the Loch Lilly-Kars Belt in western New South Wales and South Australia. A major area of uncertainty is the configuration and extent of the Cambrian convergent-margin system and lateral variations thereof. In this study, we highlight multidisciplinary data from new and legacy sources, including lithology, geochronology, geochemistry, potential-field geophysics, deep-crustal seismic, and magnetotelluric data that permit a revised interpretation of the geological framework for the Delamerian Orogen in mainland Australia, with an emphasis on the covered, central part of the system. These data indicate that a largely continuous, east-facing volcanic arc developed in the Delamerian Orogen in the Cambrian. The arc transitions from exhibiting a strong continental affinity in the Koonenberry Belt to having less continental affinity in the Grampians-Stavely Zone of Victoria. The Loch Lilly-Kars Belt is interpreted to have occupied a volcanic arc to incipient back-arc position in the middle Cambrian.&nbsp;</div><div><br></div><div><strong>Citation: </strong>Clark A.D., et al., 2024. Cambrian convergent margin configuration in the Delamerian Orogen of mainland Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149647 </div>