From 1 - 10 / 19
  • Economic analysis of natural hazards (wind, flood and storm surge) Australia wide. See more info in: http://www.garnautreview.org.au/

  • The Value of Earth Observations from Space to Australia report (2015, ACIL Allen Consulting) examines the use of Earth observations from space (EOS) in seven key application areas: weather forecasting; ocean observation; monitoring land use and landscape change; agriculture; water; natural hazards and insurance; and onshore mining. Through a series of detailed case studies, the report establishes the value of the contribution of EOS in each application area and to the Australian economy as a whole.

  • Australian Mining History Association (Charters Towers July 2014): Offshore resource potential is clear with strong prospects identified, international certainty of tenure exists through the United Nations Convention on the Law of the Sea and the regulatory/legal system is well established, yet future offshore mineral prospects remains elusive. Deep sea mining's blue sky potential has been spruiked for so long it genuinely qualifies as mining history, but remains limited to future prospects. Historical targets have included diamonds, polymetallic nodules, cobalt on seamounts, base and precious metal rich hydrothermal vents, construction materials, coal and deep leads of tin or gold extending from onshore areas. Australia's seabed jurisdiction under the United Nations Convention on the Law of the Sea (UNCLOS) is over 16 million square kilometres, twice the area of Australian land. The Commonwealth Offshore Minerals Act 1994 relates to the exploration and production of these commodities, but in contrast to the offshore petroleum sector little activity has been recorded. Offshore resource potential is clear with strong prospects identified, international certainty of tenure exists through UNCLOS and the regulatory/legal system is well established, yet future offshore mineral prospects remains elusive. This is despite Australia based companies engaging in exploration and proposing developments in the South Pacific. Having identified the problem of lack of commercial interest, could government take actions to rectify the situation and encourage positive economic outcomes stemming from sustainable and environmentally responsible resource development in Australia's world scale offshore regime

  • map showing location of currently producing oil and gas fileds and potential future producing fields. Location and extent of oil and gas pipelines (existing and proposed) is also shown.

  • This animation shows how Reflection Seismic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what reflection seismic survey equipment looks like, what the equipment measures and how the survey works.

  • This animation shows how passive seismic surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what passive seismic equipment looks like, what the equipment measures and how the survey works.

  • Geoscience Australia produces a range of educational resources (ga.gov.au/education), including webinars on various geoscientific topics for school children. These webinars are designed to be used for classroom or home learning. They are standalone products that do not require preparation or follow-up by teachers, although this is encouraged. The webinar 'Australia's Seafloor: What's on it, who cares and how do we map it' is designed for upper primary students (Years 4-6). It is delivered by marine scientist Rachel Przeslawski and introduces the techniques and uses of seabed mapping, with a focus on Australia, as well as some of the fascinating marine animals found on the seafloor. Length: 23 minutes.

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • Australian Resource and Energy Infrastructure map is a national view of Australia's mineral resources and energy infrastructure, Base scale of 1:5,000,000.

  • The Australian Government, through the National Water Infrastructure Fund – Expansion, commissioned Geoscience Australia (GA) to undertake the project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB). The project commenced in July 2019 and will finish in June 2022. The aim of the project is to develop and evaluate new tools and techniques to assess the status of GAB groundwater system to support responsible management of basin water resources. A critical relationship exists between sediment depositional architecture and groundwater flow within and between GAB aquifers, and their connectivity with underlying and overlying aquifers. Little is known about lateral and vertical facies variation within the hydrogeological units and potential compartmentalisation and connectivity across the GAB. To improve the understanding of distribution and characteristics of Jurassic and Cretaceous sediments across the Eromanga/Galilee/Surat basins region, GA is compiling, processing and correlating a variety of well log data. Correlations have been made between geological units of similar age using palynological data from 322 key wells along 28 regional transects to standardise lithostratigraphic units, which are currently described using varying nomenclature, to a single chronostratigraphic chart across the entire GAB. The distribution of generalised sand/shale ratios calculated for 236 wells in the Surat and Eromanga basins are used to estimate the thickness of sand and shale in the different formations, with implications for formation porosity and the hydraulic properties of aquifers and aquitards. This study highlights regional lithological heterogeneity in each hydrogeological unit, and contributes to our understanding of connectivity within and between aquifers. This report and associated data package provide a first phase of data compilation on 322 key wells in the Surat and Eromanga basins to assist in updating the geological framework for the GAB. A data gap analysis and recommendations for building on this initial work are also provided.