From 1 - 10 / 181
  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • The developed method of long-strip adjustment for orientation and georeferencing of PRISM imagery is based on the merging of successive images within a single satellite pass into what amounts to a single image covering the entire orbit segment. Metadata for each separate scene is merged to produce a single, continuous set of orbit and attitude parameters, such that the entire strip of tens of images can be treated as a single image, even though the separate scenes are not actually merged. Within the strip adjustment, the orbit parameters are refined based on the provision of GCPs at each end of the strip. A minimum of four GCPs is required to achieve 1-pixel georeferencing accuracy, even for strip lengths of 1000 km or more. The merging of orbit data results in a very considerable reduction in both the number of unknown orientation parameters and the number of required GCPs in the sensor orientation adjustment. Indeed the number of required GCPs can drop from well over 100 to only 4-6 for a 50-image orbit segment. Moreover, unlike in traditional photogrammetric strip adjustment, there is no need for tie-point measurements between images. Once the adjusted orbit parameters are obtained, the georeferencing and orthorectification process can revert to a fully automatic image-by-image computation. Following orthorectification, a final mosaicking is undertaken to produce the reference image, namely the AGRI. AGRI was needed because imagery from emerging new satellites can be automatically registered to it, consistently and accurately. AGRI was made possible by the developed long-strip adjustment approach to satellite image georeferencing. This technique, implemented in Barista, rendered the project feasible in time, logistics and cost. It reduced the image registration problem from correction of almost 10,000 scenes to correction of just 105 orbit segments. Moreover, the number of required GCPs was reduced from more than 30,000 to less than 1000.

  • Categories  

    This GSV Horsham VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Horsham, Vic, 1994 VIMP Survey (GSV3020). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Horsham VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1994 by the VIC Government, and consisted of 73755 line-kilometres of data at a line spacing between 200m and 400m, and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • If colour TMI map is purchased with greyscale TMI map the price is $269.80 (inc GST) for both

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This GSQ Southern Bowen Basin Qld magnetic rtp vd1 grid geodetic is the first vertical derivative of the TMI RTP grid of the Southern Bowen Basin, Qld, 2004 survey. This grid has a cell size of 0.001 degrees (approximately 106m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Southern Bowen Basin, Qld, 2004 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    This GSV Murray Basin Numurkah Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Bendigo East (Burrumbeet, Numurkah), Vic, 1980 (GSV0188). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Murray Basin Numurkah Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1980 by the VIC Government, and consisted of 16417 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Murray Basin Numurkah Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Bendigo East (Burrumbeet, Numurkah), Vic, 1980 (GSV0188). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Murray Basin Numurkah Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1980 by the VIC Government, and consisted of 16417 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Murray Basin Kerang A Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the St Arnaud/Bendigo West, (Kerang) Vic, 1980 (GSV0192). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Murray Basin Kerang A Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1980 by the VIC Government, and consisted of 55000 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Honeysuckle Creek tmi rtp 1vd grid geodetic is the first vertical derivative of the TMI RTP grid of the SMMSP - MagSpec - Honeysuckle Creek, Vic, 2001 survey. This grid has a cell size of 0.00021 degrees (approximately 21m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2001 by the VIC Government, and consisted of 14795 line-kilometres of data at 100m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the SMMSP - MagSpec - Honeysuckle Creek, Vic, 2001 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    This GSV Yea VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Yea, Vic, 1997 VIMP Survey (GSV3070). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Yea VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1997 by the VIC Government, and consisted of 14605 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.