CO2
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
A dynamic modelling study was undertaken to assess the feasibility of a planned CO2 injection experiment into a shallow fault at the CO2CRC’s Otway Research Facility. The aim was to identify key physical properties that strongly influence migration behaviour but are presently unmeasured. Two different simulators (CMG-GEM and TOUGH2) were used to model this experiment. Both simulation efforts indicate that the proposed experiment is feasible, but show the need for better data on the maximum injection pressure and the permeability distribution in the near-surface region (including the continuity of the clay layer). During the simulation with high injection rate, there could be a rapid accumulation of CO2 at the early injection stage due to the constraints of maximum injection pressure. The modelling results suggest that the dominant trapping mechanisms are likely to be free CO2 gas trapped by the upper clay layer and residual trapping. The total amount of CO2 that could be injected increased with greater injection pressure, injection rate and maximum residual gas saturation. The results suggest that dissolution of CO2 is likely to continue to increase during the injection and post-injection stages. After the CO2 injection phase, the gas was found to spread laterally within the reservoir and moved upward along the permeable grid cells at the modelled fault. A comparison between the modelling approaches suggests that if there is a desire to have CO2 migrate up the fault and reach the upper clay layer, it will be important to conduct the injection experiment at the most permeable sections of the fault and inject CO2 into a shallow high permeability layer. It is necessary to clarify whether there is an unsaturated zone beneath the clay layer as this is speculated to exist but is unknown.
-
The CO2CRC Otway Project in southwestern Victoria is the Australian flagship for geological storage of CO2. Phase 1 of the project involved the injection of a CO2-rich supercritical fluid into a depleted natural gas field at a depth of ~2 km. The project reached a major milestone late last year with the cessation of injection and the emplacement of around 65,000 tonnes of the supercritical fluid. Phase 2 of the project is set to commence in early 2011 with the injection a few 100 tonnes of pure CO2 into a saline aquifer at ~1.5 km depth. Critical to the project was the drilling of the CRC-1 and CRC-2 wells, with both being used as injection wells. During drilling of each well, fluorescein dye was added to the drilling mud with the intention to maintain a concentration of 5 ppm w/v. The role of fluorescein was to 1) quantitated the degree of drilling fluid contamination that may accompany autochonthous formation waters recovered with the multiple dynamic testing (MDT) tool, and 2) provide a measure of the depth of drilling mud penetration into the recovered cores in order to provide pristine material for microbiological studies.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises TCO2 pools (0-2cm) and fluxes calculated from bottle incubation experiments (24 hours).
-
Residual CO2 saturation (Sgr-CO2) is considered one of the most important trapping mechanisms for geological CO2 storage. Yet, standard procedures for the determination of Sgr-CO2 are missing and Sgr-CO2 has not been determined quantitatively at reservoir until recently. This circumstance introduces uncertainty in the prediction of the nature and capacity of CO2 storage and requires the development of well test procedures. The CO2CRC drilled a dedicated well with perforations in a low salinity aquifer of the Paaratte Formation between 1440 - 1447 m below the surface of the Otway Basin, Australia, with the aim to develop and compare five methods to determine Sgr-CO2 (see also Paterson et al, this volume).
-
The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known reserves of groundwater and onshore hydrocarbons and also contains extensive geothermal and uranium systems. The basin has also demonstrated potential as a greenhouse gas sequestration site and will likely play an intrinsic role in securing Australia's energy future. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally compiled drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and 1:1,000,000 scale surface geology map of Australia. Geophysical wireline logs, hydrochemistry and radiometrics datasets were also integrated into the 3D geological map
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises specific surface area and bulk (%) carbonate data from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
Australia's coal-based power-stations produce about 70% of its energy needs and consequently have led, to the adoption of a multi-disciplinary approach to instigating low emission technologies, which include CO2 capture, injection and storage. The onshore Bowen Basin could provide potential multi-scale storage site projects. Storage potential was demonstrated within a 256 square kilometer area on the eastern flank of the 60-km by 20-km Wunger Ridge using a regional model pertaining to a potential commercial-scale 200 megawatt power-station with emission/injection rates of 1.2 million ton/year. Palaeogeography interpretations of the targeted reservoir indicate a dominantly meandering channel system with permeabilities of up to 1 darcy on the ridge's eastern flank, waning to a deltaic system downdip. Seismic interpretation indicates a relatively unfaulted reservoir-to-seal section on the flank with low-relief structures. Depth to reservoir ranges from 2100 to 2700-m. Simulation from a simplified 3-D block model indicates at least two vertical wells are needed to inject at 1.2 million ton/year in permeabilities of 1 darcy, and reservoir thicknesses of about 5-m. The presence of intra-reservoir baffles reduces the injection rate possible, with a subsequent increase in the number of wells required to maintain the project injection rate, also true for a low-permeability trapping scenario. Long-term storage of acceptable volumes would involve intra-reservoir baffle, stratigraphic, residual, and potentially depleted field trapping scenarios along a 10 to 15-km migration route. Trapping success is ultimately a function of optimal reservoir characteristics both estimated from more complex modeling and, ultimately, collection of infill seismic and new wells.
-
This is a 5.48 minute long movie demonstrating Carbon Capture Technologies as one of the range of solutions that can help reduce greenhouse gas emissions. Using 3D Max animation we show how carbon dioxide is captured at the source of emissions (coal fired power stations for example), and permanently storing them deep underground. The movie has professional narration explaining the story, throughout.
-
RPS Group were awarded a contract by CO2CRC (Geoscience Australia) to carry out a Aerial LiDAR survey over the Nirranda South region of the Victorian Coast. The data will be used for the CO2CRC Otway project which will demonstrate that carbon capture and storage is a technically and environmentally safe way to reduce Australia's greenhouse gas emissions.
-
This web map service shows the key Australian petroleum producing basins ranked by their potential for CO2 enhanced oil recovery (CO2-EOR), based on a study completed by Geoscience Australia in 2020. Basin rankings result from the assessment of six parameters: the API gravity of the oil, temperature, pressure, reservoir quality (porosity, permeability), nearby CO2 sources and existing infrastructure. Higher rankings indicate greater potential for CO2-EOR. For further information see: Tenthorey, E., and Kalinowski, A. 2022. Screening Australia’s Basins for CO2-Enhanced Oil Recovery. Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022. Available at SSRN: https://ssrn.com/abstract=4294743 or http://dx.doi.org/10.2139/ssrn.4294743.