From 1 - 10 / 236
  • This data represents the integrated Shields (Shields, 1936) parameter exceeding 0.25 divided by the integrated total Shields parameter. The Shields parameter (non-dimensional bed shear stress) value of 0.25 is assumed to be the threshold for creating disturbed patches. This value is several times larger than that required to initiate traction bedload transport (~0.05) and falls in the middle of the ripple and dune bedform stability field. It represents conditions when the seabed is highly mobile and where patches of disturbed habitat are likely to be created. Shields, A. 1936. Application of similarity principles and turbulence research to bed-load movement. Mitteilunger der Preussischen Versuchsanstalt f¨ur Wasserbau und Schiffbau 26: 5-24

  • The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample dataset comprises chlorophll abc measurments from surface sediments (0-2 cm) in the Timor Sea.

  • This dataset contains species identifications of benthic worms collected during survey TAN0713 (R.V. Tangaroa, 7 Oct - 22 Nov 2007). Animals were collected from the Faust and Capel basins and Gifford Guyot with a boxcore, rock dredge, or epibenthic sled. Specimens were lodged at Museum of Victoria in June 2008. Species-level identifications were undertaken by Robin Wilson at the Museum of Victoria and were delivered to Geoscience Australia on 1 Aug 2008. See GA Record 2009/22 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • The northern Australian continental shelf is the focus for an expanding offshore energy industry and is also recognised for its high-value marine biodiversity in regional marine management plans. To reduce uncertainty and risk in the future development and management of the region, Geoscience Australia has an ongoing program to provide integrated marine environmental information to support both activities. The program includes collation of existing marine data and acquisition of new high resolution datasets. In 2009 and 2010, marine surveys in eastern Joseph Bonaparte Gulf were completed to characterise the seabed in representative areas, assess potential for geohazards and identify unique or sensitive benthic habitats. Data acquired included multibeam sonar bathymetry (~1900 km2), shallow (<120 m) sub-bottom profiles, sediment grabs and shallow (2-5 m) cores, towed video and epibenthic sleds. Geomorphic features mapped range from expansive soft-sediment plains, to isolated carbonate banks that rise tens of metres and incised valleys up to 200 m deep. Each feature is characterised by a distinctive biota, ranging from coral and sponge gardens on banks to diverse infaunal communities across plains. Geohazards include potential for localised slumping in valleys and escape of subsurface fluid/gas from plains and valley floors. To facilitate uptake of this information, results are integrated as generalised graphical models representing key spatial patterns of shelf ecosystems. This work has led to further work in targeted areas of the Gulf as part of a new four-year Australian Government program to inform geological and environmental assessments of offshore basins for CO2 storage.

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises total chlorin concentrations and chlorin indices in the upper 2cm of seabed sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press

  • Publicly available bathymetry and geophysical data has been used to map geomorphic features of the Antarctic continental margin and adjoining ocean basins at scales of 1:1-2 million. The key bathymetry datasets used were GEBCO08 and ETOPO2 satellite bathymetry (Smith & Sandwell 1997), in addition to seismic lines in key areas. Twenty-seven geomorphic units were identified based on interpretation of the seafloor bathymetry with polygons digitised by hand in ArcGIS.

  • The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises specific surface area and bulk (%) carbonate data from surface seabed sediments (~0-2 cm) in the Timor Sea.

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This resource comprise organic carbon and nitrogen concetrations and isotopes and specifi surface areas of the mud fraction (<63 um) of the upper 2 cm of seabed sediments . The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • Seagrass communities in the northwest of Torres Strait are known to disappear episodically over broad areas. Sediment mobility surveys were undertaken within two study areas during the monsoon and trade wind seasons, in the vicinity of Turnagain Island, to find out if the migration of bedforms could explain this disappearance. The two study areas covered sand bank and sand dune environments to compare and contrast their migration characteristics. Repeat multibeam sonar surveys were used to measure dune-crest migration during each season.

  • This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.