From 1 - 10 / 59
  • The Geoscience Australia Rock Properties database stores the result measurements of scalar and vector petrophysical properties of rock and regolith specimens and hydrogeological data. Oracle database and Open Geospatial Consortium (OGC) web services. Links to Samples, Field Sites, Boreholes. <b>Value:</b> Essential for relating geophysical measurements to geology and hydrogeology and thereby constraining geological, geophysical and groundwater models of the Earth <b>Scope:</b> Data are sourced from all states and territories of Australia

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the GA302 Capel and Faust Basins MSS survey were acquired in 2006 for Geoscience Australia. This survey acquired a range of pre-competitive geological and geophysical data that included seismic reflection, gravity, magnetic and swath bathymetry measurements, as well as seafloor dredge samples.

  • AusAEM 02 Airborne Electromagnetic Survey, NT /WA, 2019-2020: TEMPEST® AEM data and conductivity estimates The accompanying data package, titled “AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and conductivity estimates”, was released on 10 August 2020 by Geoscience Australia (GA), the Geological Survey of Western Australia and the Northern Territory Geological Survey. The package contains processed data from the“AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey" that was flown over the North-West part of the Northern Territory across the border and all the way to the coast into Western Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 55,675 line kilometres of geophysical data. The survey was flown in two tranches during 2019, by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. CGG also processed the data. The survey also includes a further 6,450 line kilometres of infill flying that was funded by private exploration companies, acquired in certain blocks within the survey area. The data from these infill blocks have been processed in the same manner as the regional lines and are part of this release. Geoscience Australia commissioned the AusAEM 02 survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Western Australia. Geoscience Australia (GA) leads the EFTF program, in collaboration with the State and Territory Geological Surveys of Australia. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • AusLAMP is a collaborative national project to cover Australia with long-period magnetotelluric (MT) data in an approximately 55 km spaced array. Signatures from past tectonothermal events can be retained in the lithosphere for hundreds of millions of years when these events deposit conductive mineralogy that is imaged by MT as electrically conductive pathways. MT also images regions of different bulk conductivity and can help to understand the continuation of crustal domains down into the mantle, and address questions on the tectonic evolution of Australia. The AusLAMP data presented here were collected as part of three separate collaborative projects involving several organisations. Geoscience Australia (GA), the Geological Survey of South Australia, the Geological Survey of New South Wales, the Geological Survey of Victoria, and the University of Adelaide all contributed staff and/or funding to collection of AusLAMP data; GA and AuScope contributed instrumentation. The data cover the Paleo-Mesoproterozoic Curnamona Province, the Neoproterozoic Flinders Ranges, and the Cambrian Delamerian Orogen, encompassing eastern South Australia and western New South Wales and western Victoria. This project represents the first electrical resistivity model to image the entire Curnamona Province and most of the onshore extent of the Delamerian Orogen, crossing the geographical state borders between South Australia, New South Wales and Victoria.

  • The AusAEM1 survey is the world’s largest airborne electromagnetic survey flown to date, extending across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60 000 line kilometres of data were acquired at a nominal line spacing of 20 km. Using this dataset, we interpreted the depth to chronostratigraphic surfaces, assembled stratigraphic relationship information, and delineated structural and electrically conductive features. Our results improved understanding of upper-crustal geology, led to 3D mapping of palaeovalleys, prompted further investigation of electrical conductors and their relationship to structural features and mineralisation, and helped us continuously connect correlative outcropping units separated by up to hundreds of kilometres. Our interpretation is designed to improve targeting and outcomes for mineral, energy and groundwater exploration, and contributes to our understanding of the chronostratigraphic, structural and upper-crustal evolution of northern Australia. More than 150 000 regional depth measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. <b>Citation:</b> Wong, S.C.T., Roach, I.C., Nicoll, M.G., English, P.M., Bonnardot, M.-A., Brodie, R.C., Rollet, N. and Ley-Cooper, A.Y., 2020. Interpretation of the AusAEM1: insights from the world’s largest airborne electromagnetic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The Northern Territory Geological Survey (NTGS) designed the Mount Peake-Crawford survey to provide high resolution magnetic, radiometric and elevation data in the area. It is anticipated that the data from the survey would help attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits in the Northern Territory. A total of 120,000 line km of regional data (200m line spacing) and additional infill data (100m line spacing), flown at 60m flight height were acquired during the survey between July and October 2019. The survey was managed by Geoscience Australia. <p>Various grids were produced from the Mount Peake-Crawford Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. The merged grids have a cell size of 20m. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • <p>Various gridded images were produced from the NTGS Tanami Region Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • This data collection are comprised of magnetic surveys acquired across Australia by Commonwealth, State and Northern Territory governments and the private sector with project management and quality control undertaken by Geoscience Australia. Magnetic surveying is a geophysical method for measuring the intensity (or strength) of the Earth's magnetic field, which includes the fields associated with the Earth's core and the magnetism of rocks in the Earth's crust. Measuring the magnetism of rocks, in particular, provides a means for the direct detection of several different types of mineral deposits and for geological mapping. The magnetism of rocks depends on the volume, orientation and distribution of their constituent magnetic minerals (namely magnetite, monoclinic pyrrhotite, maghaemite and ilmenite). The instrument used in magnetic surveys is a magnetometer, which can measure the intensity of the magnetic field in nanoteslas (nT). Magnetic surveys in this collection have been acquired using aircraft or ship-mounted magnetometers and are a non-invasive method for investigating subsurface geology.

  • This collection includes calibrated time-series data and other products from Geoscience Australia's geomagnetic observatory network in Australia and Antarctica. Data dates back to 1924. <b>Value: </b>These data are used in mathematical models of the geomagnetic field, in resource exploration and exploitation, to monitor space weather, and for scientific research. The resulting information can be used for compass-based navigation, magnetic direction finding, and to help protect communities by mitigating the potential hazards generated by magnetic storms. <b>Scope: </b>Continuous geomagnetic time series data, indices of magnetic activity and associated metadata, Data dates back to 1924.

  • Survey Name: Tasmanian Tiers Datasets Acquired: Magnetics, Radiometrics and Elevation Geoscience Australia Project Number: P5003 Acquisition Start Date: 10/02/2021 Acquisition End Date: 02/04/2021 Flight line spacing: 200 m Flight line direction: East-West (090-270) Total distance flown: 33,019 line-km Nominal terrain clearance: 80 m Blocks: 5 Data Acquisition: Magspec Airborne Surveys Project Management: Geoscience Australia Quality Control: Geoscience Australia Dataset Ownership: Mineral Resources Tasmanian and Geoscience Australia Included in this release: 1. Point-located Data ASCII-column data with accompanying description and definition files. • Magnetics corrected i. Magnetic data with corrections for diurnal, IGRF, tie-levelling, micro-levelling. ii. Elevation data converted to geoidal values and a digital elevation model. • Radiometrics corrected i. Equivalent ground concentrations of radioelements with NASVD spectral filtering and standard IAEA processing. 2. Grids Gridded data in ERMapper (.ers) format (GDA2020, MGA55). • Total magnetic intensity (TMI). • TMI reduced to pole (RTP). • TMI RTP with first vertical derivative applied. • Dose rate (with NASVD and standard processing). • Potassium concentration (with NASVD, standard processing, 3D topographic correction). • Thorium concentration (with NASVD, standard processing, 3D topographic correction). • Uranium concentration (with NASVD, standard processing, 3D topographic correction). • Laser-derived digital elevation model (geoidal). • Radar-derived digital elevation model (geoidal). 3. Outlines (survey extents) • Polygon outlines showing the extent of each block and the entire survey in ArcGIS shapefile format (GDA2020, MGA55). 4. Reports • P5003_3D_topographic_correction_of_gamma_ray_data.pdf i. Details of the 3D topographic corrections applied to the radiometric data. • P5003_calibration_report_fixed_wing.pdf i. Details of the calibration performed on the fixed wing aircraft (block 1). • P5003_calibration_report_helicopter.pdf i. Details of the calibration performed on the helicopter (blocks 2-5). • P5003_operations_and_processing_report.pdf i. Summary of the data acquisition and processing. © Mineral Resources Tasmania, Government of Tasmania and Commonwealth of Australia (Geoscience Australia) 2021. With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International Licence. (http://creativecommons.org/licenses/by/4.0/legalcode).