From 1 - 10 / 34
  • Elevation data and products such as Digital Elevation Models derived from these data comprise an essential layer within the National Spatial Data Infrastructure. Historically the creation of these datasets has been the domain of National and State mapping agencies. However, in recent years the rapid development of survey technologies and industry capability, the need for high resolution elevation data to meet a range of purposes, and the nature of government funding arrangements has resulted in significant project-based investment.

  • The Australian tidal error model is the first attempt to define uncertainties in Mean Sea Level (MSL) around the Australian coastline between tide gauges. Tide gauge observations for the Australian coast span from less than 1 month to greater than 100yrs of observations. The high quality, decade and longer observation tide gauges are used in the production of the frequency dependant error surface. The observed hourly data are analysed using the National Tidal Centre TANS analysis package, resulting in harmonic constituents (used for prediction), a MSL determination, a fitted linear trend and a residual. The power spectrum of the residual is then separated into a predefined set of frequency bins, representing the noise levels of the sea surface proportional to frequency. The longer span observations fill more of this predefined spectrum, specifically the lower frequency errors, which contribute a significant proportion of error. Spatial interpolation around Australia is performed individually for each frequency bin. Using this method allow regions with shorter span observations to have lower frequency error added, creating a synthetic spectrum at the interpolation point. The synthetic spectrums are then used to determine confidence intervals of MSL around the coastline of Australia. The understanding of these errors is an important step for combining bathymetry and topography datasets ultimately creating a seamless national digital elevation model.

  • A test site for airborne gravity (AG) systems has been established at Kauring, approximately 100 km east of Perth, Western Australia. The site was chosen using a range of criteria that included being within 200 km of Jandakot Airport in Perth where most of the airborne systems would be based at one time or another when operating in Australia, being free of low level flight restrictions, having minimal human infrastructure in the central 20 by 20 km area, and the presence of gentle to rolling terrain rather than deeply incised topography or an extensive flat plain with very low relief. In anticipation of catering for airborne gravity gradiometer (AGG) systems, the site was required to have a gravity gradient feature with clear response in the wavelength range of 100 m to 2 km in a 5 by 5 km core region. In addition to catering for AGG systems, the site may also be used in the future to demonstrate and compare various airborne magnetic systems (TMI, vector, and gradient tensor systems) and digital terrain mapping systems.

  • These datasets cover approximately 3500 sq km in the central sector of the Gladstone Regional Council and are part of the 2009 Capricorn Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • Tsunami inundation models are computationally intensive and require high resolution elevation data in the nearshore and coastal environment. In general this limits their practical application to scenario assessments at discrete communiteis. This study explores teh use of moderate resolution (250 m) bathymetry data to support computationally cheaper modelling to assess nearshore tsunami hazard. Comparison with high ersolution models using best available elevation data demonstrates that moderate resolution models are valid (errors in waveheight < 20%) at depths greater than 10m in areas of relatively low sloping, uniform shelf environments. However in steeper and more complex shelf environments they are only valid at depths of 20 m or greater. Modelled arrival times show much less sensitivity to data resolution compared with wave heights and current velocities. It is demonstrated that modelling using 250 m resoltuion data can be useful in assisting emergency managers and planners to prioritse communities for more detailed inundation modelling by reducing uncertainty surrounding the effects of shelf morphology on tsunami propagaion. However, it is not valid for modelling tsunami inundation. Further research is needed to define minimum elevation data requirements for modelling inundation and inform decisions to undertake acquisition of high quality elevaiton data collection.

  • The Peel 2008 LiDAR data was captured over the Peel region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • The Swan Coast hydrologically enforced digital elevation model (HDEM) was produced in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was created from a combination of the following surveys; Perth, Peel, Harvey, Bunbury and Busselton LiDAR The Swan Coast 2008 LiDAR data was captured over the Swan Coast region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The HDEM was produced by SKM using the ANUDEM program. The HDEM ensures that primary stream/channel flow, and water flow across the land surface are accurately represented. The hydrologically enforced HDEM depicts water bodies as being flat, and water courses depict consistent downward flow of water unimpeded by vegetation or man-made structures such as bridges and major culverts. Drainage enforcement was limited to watercourse lines depicted on 1:25,000 topographic mapping and to the intersection of the water course layer and transport layer. For the purposes of inundation modelling, inundation contours have been developed using the HDEM. The inundation extents were extracted at 0.2m intervals below 2m AHD and 1m intervals up to 10m. The inundation contours are available as polylines. The inundation contours have also been flagged as to whether the area connects directly to the sea. he data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing.

  • The Harvey 2008 LiDAR data was captured over the Harvey region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • The Bunbury 2008 LiDAR data was captured over the Bunbury region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • National Elevation Data Audit is a report outlining all elevation data available across all Australian jurisdictions which was identified by the Intergovernment Committee on Surveying and Mapping's (ICSM) Permanent Committee on Topographic Information (PCTI).