From 1 - 10 / 110
  • Poster about the Woolshed Creek fossil site discovered by W.B. Clarke in 1844 now being rehabilitated as a geological heritage site, after Madura Parkway roadworks.

  • <div>NDI Carrara&nbsp;1 is a 1751 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI). This campaign was a collaboration between Geoscience Australia under the Exploring for the Future program, together with MinEx CRC and the Northern Territory Geological Survey. It is the first drillhole to intersect Proterozoic rocks of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected ~625 m of the Paleozoic Georgina Basin, which overlies ~1120 m of Proterozoic carbonates, black shales and siliciclastic rocks, with hydrocarbon shows encountered in both the Paleozoic and Proterozoic sections. Following the completion of the drillhole, a comprehensive analytical program was carried out by Geoscience Australia to better understand the geology of the Carrara Sub-basin and its resource potential.</div><div><br></div><div>Here we present new high-resolution strontium (87Sr/86Sr), carbon (δ13C) and oxygen (δ18O) isotope data from carbonate bearing samples of the Paleozoic Georgina Basin and the Proterozoic Lawn Hill Formation intersected in NDI Carrara&nbsp;1. The aim of this data acquisition was to provide an improved understanding of the paleo-depositional environments and local/global chemostratigraphy trends recorded in the Carrara Sub-basin. </div><div><br></div><div>The majority of samples show significant alteration and thus caution should be exercised when using this data for assessing primary depositional conditions and contemporary sea-water chemistry. Despite the altered nature of most samples, samples belonging to undifferentiated Georgina Basin preserve 87Sr/86Sr ratios close to that of mid-Cambrian seawater, indicating the sampled intervals of Georgina Basin were likely connected to the global Cambrian ocean.&nbsp;Two small positive δ13C excursions (with positive shift in δ18O) within Georgina Basin samples may coincide with reported mid-Cambrian positive δ13C global marine excursions. </div><div><br></div><div>The least altered samples from the Proterozoic Lawn Hill Formation show more radiogenic 87Sr/86Sr values than the expected value of coeval mid-Proterozoic ocean at ~1600 Ma. These radiogenic 87Sr/86Sr values may reflect (i) influx of terrigenous material into a restricted basin with reduced interaction with the global ocean, or (ii) secondary overprinting by more radiogenic diagenetic fluids.</div> Abstract/Poster submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.</div><div><br></div><div>In order to gain insights into the resource potential of the South Nicholson region, a key region of focus for EFTF, National Drilling Initiative (NDI) Carrara&nbsp;1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS), and the MinEx CRC. NDI Carrara&nbsp;1 is the first drill hole to intersect the, as yet, undifferentiated Proterozoic rocks of the newly defined Carrara Sub-Basin within the South Nicholson region. NDI Carrara&nbsp;1 is located on the western flank of the Carrara Sub-basin, reaching a total depth of 1751&nbsp;m, intersecting ca. 630&nbsp;m of Cambrian Georgina Basin overlying ca. 1100&nbsp;m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div><br></div><div>Geoscience Australia is undertaking a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara&nbsp;1 based on wireline data, as well as undertaking a range of analyses of over 400 physical samples recovered through the entire core. These analyses include geochronology, isotopic studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity, and petroleum systems investigations. Hylogger™ data is available at the NTGS Geoscience Exploration and Mining Information System (GEMIS) webpage.</div><div><br></div><div>This data release presents results for analyses on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div><br></div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div><div><br></div>

  • <div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts&nbsp;(2023).&nbsp;Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity,&nbsp;Australian Journal of Earth Sciences,&nbsp;DOI:&nbsp;10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.

  • Geoscience Australia is leading a regional evaluation of potential mineral, energy and groundwater resources through the Exploring for the Future (EFTF) program. This stratigraphic assessment is part of the Onshore Basin Inventories project, and was undertaken to understand Devonian-aged depositional systems and stratigraphy in Queensland’s Adavale Basin. Such data are fundamental for any exploration activities. Maximising the use of existing well data can lead to valuable insights into the regional prospectivity of sedimentary basins. Data from 53 Adavale Basin wells have been used to evaluate subsurface stratigraphy, depositional environments and hydrocarbon shows across the basin. Stratigraphic data from 26 representative wells, where the well intersected at least three Devonian stratigraphic units, are used to generate chronostratigraphic time-space charts and two-dimensional well correlations within, and between, different (northern, north central, central, west central, east central and southern) parts of the basin. The primary objectives of the study are: • stratigraphic gap analysis to identify geological uncertainties and data deficiencies in the areas of interest, • integrate the well data with Geoscience Australia’s databases (i.e., Australian Stratigraphic Units, Time Scale, Geochronology, STRATDAT, RESFACS),the Geological Survey of Queensland’s Datasets and publicly available (published and unpublished) research data and information, • determine the lithostratigraphic unit tops, log and lithology characterisations, depositional facies, boundary criteria, spatial and temporal distribution and regional correlations, • integrate key biostratigraphic zones and markers with geochronological absolute age dates to generate a chronostratigraphic Time-Space Diagram of the basin. This work improves the understanding of the chronostratigraphic relationships across the Adavale Basin. The age of the sedimentary successions of the basin have been refined using geochronology, biostratigraphy and lithostratigraphic correlation. The chronostratigraphic and biozonation chart of the Adavale Basin has been updated and the stratigraphic, biostratigraphic and hydrocarbon shows datasets will be available for viewing and download via the Geoscience Australia Portal (https://portal.ga.gov.au/restore/15808dee-efcd-428e-ba5b-59b0106a83e3).

  • <div>The Australian Government's Trusted Environmental and Geological Information (TEGI) program is a collaboration between Geoscience Australia and the CSIRO that aims to provide access to baseline geological and environmental data and information for strategically important geological basins. The initial geological focus is on the north Bowen, Galilee, Cooper, Adavale, and their overlying basins. This paper presents seven stratigraphic frameworks from these basin regions that underpin groundwater, environmental and resource assessments, identify intervals of resource potential, and can assist in management of associated risks to groundwater resources and other environmental assets. The construction of stratigraphic frameworks for this program builds upon existing lithostratigraphic schemes to capture the current state of knowledge. The frameworks incorporate play divisions for resource and hydrogeological assessments. A total of 33 play intervals are defined for the north Bowen, Galilee, Cooper, Adavale, and their overlying basins, using chronostratigraphic principles. Where possible, unconformities and flooding surfaces are used to define the lower and upper limits of plays. Data availability and temporal resolution are considered in capturing significant changes in gross depositional environments. The results from this work enable the consistent assessment of shared play intervals between basins, and also highlight uncertainties in the age and correlation of lithostratigraphic units, notably in the Galilee and north Bowen Basins.</div> This presentation was given at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March, Brisbane (https://2023.aegc.com.au/)

  • <div>A prerequisite to understanding the evolution and resource potential of a basin is to establish a reliable stratigraphic framework that enables the correlation of rock units across multiple depocentres. Establishing a stratigraphic model for the Adavale Basin is challenging due to its structurally complexity, lack of well penetration and its lateral changes in facies. Biostratigraphy appears broad-scale, and despite providing chronostratigraphic control for the Lower Devonian Gumbardo Formation when combined with U/Pb zircon geochronology, the rest of the Devonian succession is hampered by a lack of microfossil assemblages and their poor preservation. The aim of this study is to establish an independent chemostratigraphic correlation across the Adavale Basin using whole rock inorganic geochemistry. Within this study, a total of 1489 cuttings samples from 10 study wells were analysed by Inductively Coupled Plasma – Optical Emission Spectrometry and Inductively Coupled Plasma – Mass Spectrometry for whole rock geochemistry, in order to establish an independent chemostratigraphic zonation scheme. Based on key elemental ratios selected to reflect changes in feldspars, clay minerals and provenance, the Devonian-aged stratigraphy is characterised into four chemostratigraphic mega-sequences that encompass the Gumbardo Formation (Mega-sequence 1); the Eastwood Formation, the Log Creek Formation and the Lissoy Sandstone (Mega-sequence 2); the Bury Limestone and the Boree Salt formations (Mega-sequence 3); and the Etonvale and the Buckabie formations (Mega-sequence 4). These mega-sequences have been further subdivided into a series of chemostratigraphic sequences that can be correlated across the study wells, establishing a regional correlation framework.&nbsp;&nbsp;&nbsp;</div> This Paper was submitted/presented to the 2023 Australian Petroleum Production & Exploration Association (APPEA) Conference 15-18 May, (https://www.appea.com.au/appea-event/appea-conference-and-exhibition-2023/). <b>Journal Citation:</b> Riley David, Pearce Tim, Davidson Morven, Sirantoine Eva, Lewis Chris, Wainman Carmine (2023) Application of elemental chemostratigraphy to refine the stratigraphy of the Adavale Basin, Queensland. <i>The APPEA Journal</i><b> 63</b>, 207-219. https://doi.org/10.1071/AJ22108

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>

  • We present a new geological map of Warrumbungle Volcano created from volcanic facies field mapping, new geophysical, geochemical, and geochronological data as well as data from previous studies. Field mapping and petrography defined 19 volcanic and 2 mixed volcanic-sedimentary facies. Facies identification and distribution in conjunction with geochemical analyses indicate an early shield-forming phase of predominantly mafic and intermediate lavas and pyroclastic deposits, and minor felsic lavas deposited on an irregularly eroded basement of Surat and Gunnedah basin rocks. The shield was subsequently intruded by felsic intermediate to felsic magmas that formed dykes and other intrusions including possible cryptodomes, and also erupted as lava domes and block-and-ash-flow deposits. A radial dyke swarm cross-cuts most units, although is concentrated within basement sandstone surrounding the central area of the volcano, suggesting late inflation accompanied by dyke emplacement. Geochemistry indicates differentiation of a single although repeatedly recharged alkaline magmatic suite. Fractionation of olivine, Ti-magnetite and clinopyroxene occurred in mafic magmas, and after reaching 62 wt% SiO2 crystallisation of apatite and alkali feldspar took place. A new U-Pb zircon SHRIMP magmatic crystallisation age of 16.25 +/- 0.12 Ma on a felsic block-and-ash flow deposit is in agreement with the recalculated 40Ar/39Ar isochron dates of previous workers. Based on our mapping and the use of volcanic facies to define mappable units, we recommend the previous Warrumbungle Volcanics be elevated from formation to group status and renamed the Warrumbungle Volcanic Complex.

  • Geoscience Australia has undertaken a regional seismic mapping study of the offshore Otway Basin extending across the explored inner basin to the frontier deep-water region. Seismic interpretation covers over 18000 line-km of new and reprocessed data acquired in the 2020 Otway Basin seismic program and over 40000 line-km of legacy 2D seismic data. We present new basin-scale isochore maps that show the distribution of the Cretaceous depocentres. Maps for the Lower Cretaceous Crayfish and Eumeralla supersequences, together with those recently published for the Upper Cretaceous Shipwreck and Sherbrook Supersequences, completes the set of isochore maps for the main tectonostratigraphic basin intervals. Mapping of basement involved faults has revealed structural fabrics that have influenced depocentre development. The tectonostratigraphic development of depocentres and maps of deep crustal units delineate crustal thinning trends related to late Cretaceous extension phases. This work highlights the need to review and update structural elements. For example, the boundary between the Otway and Sorell basins is now geologically constrained. The refinements to the tectonostratigraphic evolution of the Otway Basin presented here have important implications for the distribution and potential maturity of petroleum systems, especially with regard to heat flow associated with crustal extension. Presented at the 2024 Australian Energy Producers Conference & Exhibition (AEP) (https://energyproducersconference.au/conference/)