From 1 - 10 / 1436
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Gairdner - TMI grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the SA Government, and consisted of 104788 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0004 degrees (approximately 41m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the SA Government, and consisted of 104788 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS.The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Gairdner - TMI RTP 1VD grid (AWAGS) is the first vertical derivative of the TMI RTP grid of the Gairdner Airborne Magnetic Radiometric and DEM survey, SA, 2018 survey. This grid has a cell size of 0.0004 degrees (approximately 41m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2018 by the SA Government, and consisted of 104788 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Gairdner Airborne Magnetic Radiometric and DEM survey, SA, 2018 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Spencer - TMI grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the SA Government, and consisted of 49937 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Spencer - TMI RTP 1VD grid (AWAGS) is the first vertical derivative of the TMI RTP grid of the Spencer Airborne Magnetic Radiometric and DEM survey, SA, 2018 survey. This grid has a cell size of 0.0004 degrees (approximately 41m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2018 by the SA Government, and consisted of 49937 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Spencer Airborne Magnetic Radiometric and DEM survey, SA, 2018 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0004 degrees (approximately 41m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 92215 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS.The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Lake Eyre - TMI grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 92215 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Lake Eyre - TMI RTP 1VD grid (AWAGS) is the first vertical derivative of the TMI RTP grid of the Lake Eyre Airborne Magnetic Radiometric and DEM survey, SA, 2017 survey. This grid has a cell size of 0.0004 degrees (approximately 41m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2017 by the SA Government, and consisted of 92215 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Lake Eyre Airborne Magnetic Radiometric and DEM survey, SA, 2017 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Lake Eyre Airborne Magnetic Radiometric and DEM survey, SA, 2017 survey were acquired in 2017 by the SA Government, and consisted of 92215 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Streaky Bay - TMI grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the SA Government, and consisted of 90670 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.