Vulnerability
Type of resources
Keywords
Publication year
Service types
Topics
-
Australia has a low to moderate seismicity by world standards. However, the seismic risk is significant due to the legacy of older buildings constructed prior to the national implementation of an earthquake building standard in Australia. The 1989 Newcastle and the 2010 Kalgoorlie earthquakes are the most recent Australian earthquakes to cause significant damage to unreinforced masonry (URM) and light timber frame structures and have provided the best opportunities to examine the earthquake vulnerability of these building types. This paper describes the two above mentioned building types with a differentiation of older legacy buildings constructed prior to 1945 to the relatively newer ones constructed after 1945. Furthermore, the paper presents method to utilise the large damage and loss related data (14,000 insurance claims in Newcastle and 400 surveyed buildings in Kalgoorlie) collected from these events to develop empirical vulnerability functions. The method adopted here followed the GEM Empirical Vulnerability Assessment Guidelines which involves preparing of a loss database, selecting an appropriate intensity measure, selecting and applying a suitable statistical approach to develop vulnerability functions and the identification of optimum functions. The adopted method uses a rigorous statistical approach to quantify uncertainty in vulnerability functions and provides an optimum solution based on goodness-of-fit tests. The analysis shows that the URM structures built before 1945 are the most vulnerable to earthquake with post 1945 URM structures being the next most vulnerable. Timber structures appear to be the least vulnerable, with little difference observed in the vulnerability of timber buildings built before or after 1945. Moreover, the older structures (both URM and timber) depict exhibit more scatter in results reflecting greater variation in building vulnerability and performance during earthquakes. The analysis also highlights the importance of collecting high quality damage and loss data which is, not only a fundamental requirement for developing empirical vulnerability functions, and but is also useful in validating analytically derived vulnerability functions. The vulnerability functions developed herein are the first publically available functions for Australian URM and timber structures. They can be used for seismic risk assessment and to focus the rm a basis for development ofing retrofit strategies to reduce the existing earthquake risk.
-
The extensive electricity transmission network of Queensland is managed by Powerlink and has a significant exposure to both thunderstorms and tropical cyclones. In coastal North Queensland tropical cyclones (TC) dominate the severe wind hazard environment whereas in South East Queensland both storm types contribute significantly. Some parts of Powerlink’s network have high concentrations of older tower assets such as in the Gladstone region which supply electricity for the smelting and refining of aluminium. Other parts provide vital transmission links with limited redundancy between regions of generation in the south to large communities to the north, such as in far-North Queensland. These assets have been developed over many years, to design standards that have progressively changed, and some have been exposed to corrosive environments that are characteristic of the warm and humid coastal tropics. As a consequence of these factors, some assets within the system are particularly vulnerable to severe wind.
-
<div>The Severe Wind Hazard Assessment for South East Queensland (SWHA-SEQ) analysed risk from severe wind events in a marginal tropical cyclone (TC) region with a large exposed population, and historical severe thunderstorm and TC impacts. SWHA-SEQ was a collaborative effort bringing together 15 partners across government, academia and the insurance sector to improve the collective understanding of wind risk in the region and inform future strategies to reduce this risk, in the context of climate change, urban planning and socio-economic status of the population. </div><div>The project involved enhancing the understanding of hazard, exposure and physical vulnerability to strengthen the comprehension of risk, including local-scale wind hazard from thunderstorm and TC wind gusts, and a semi-quantitative analysis of future wind hazard. Structural characteristics of residential housing stock were updated through a combination of street surveys, national databases of built assets and insurance portfolio statistics. Vulnerability models for residential houses including retrofitted models for 5 common house types were developed, alongside identification of key vulnerability factors for residential strata buildings.</div><div>Local governments are building on the outcomes of the project, with the City of Gold Coast using the project outcomes as the key evidence base for a A$100m investment over 7 years to advocate for uplift of building design criteria, targeted community engagement and resilience of City-owned infrastructure. Other local governments have conducted specific exercises exploring how they would manage a severe TC impact. The investments and activities directly flowing from SWHA-SEQ are testament to the partner engagement through the project. Presented at the 2024 Symposium on Hurricane Risk in a Changing Climate (SHRCC2024)
-
Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.
-
<div>Knowledge of the nature of buildings within CBD areas is fundamental to a broad range of decision-making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in CBD areas. This is being achieved in Parramatta through field survey work.</div>
-
Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.
-
This dynamic dataset is composed of data layers representing the potential damage arising from the impacts of Tropical Cyclone (TC) related winds on residential houses. The impacts are determined using information on the forecast track of the TC issued by the Bureau of Meteorology, nationally consistent exposure (residential building) and vulnerability (likely level of damage) information maintained by Geoscience Australia. The tracks are based on the content of Technical Bulletins issued by the Bureau of Meteorology’s Tropical Cyclone Warning Centres every 6 hours for active TCs in the Australian region. As such, information is generated intermittently, depending on the occurrence of TCs. The tracks are a forecast only, so do not include past position information of the TC. Forecasts may extend up to 120 hours (5 days) ahead of the forecast time. A wind field around each track is simulated using Geoscience Australia’s Tropical Cyclone Risk Model (TCRM, https://pid.geoscience.gov.au/dataset/ga/77484). This provides an estimate of the maximum gust wind speed over open, flat terrain (e.g. airports). Local effects such as topography and land cover changes are incorporated via site wind multipliers (https://pid.geoscience.gov.au/dataset/ga/75299), resulting in a 0.2-second, 10-m above ground level wind speed, with a spatial resolution of approximately 30 metres. The impacts are calculated using Geoscience Australia’s HazImp code (https://pid.geoscience.gov.au/dataset/ga/110501), which utilises the National Exposure Information System building data and a suite of wind vulnerability curves to determine the level of damage sustained by individual buildings (a damage index). The damage index values are aggregated to Australian Bureau of Statistics Statistical Area Level 1 regions, and can be assigned a qualitative damage description based on the mean damage index.
-
The National Hazard Impact Risk Service for Tropical Cyclone Event Impact provides information on the potential impact to residential separate houses due to severe winds. The information is derived from Bureau of Meteorology tropical cyclone forecast tracks, in combination with building location and attributes from the National Exposure Information System and vulnerability models to define the level of impact. Impact data is aggregated to Statistical Area Level 1, categorised into five qualitative levels of impact.
-
<div>Knowledge of the nature of buildings within CBD areas is fundamental to a broad range of decision-making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in CBD areas. This is being achieved in Perth through field survey work.</div>
-
Modelling the effectiveness of retrofit to legacy houses requires a quantitative estimate of the houses’ vulnerability to severe wind and how the vulnerability is affected by mitigation work. Historical approaches to estimating vulnerability through either heuristic or empirical methods do not quantitatively capture the change in vulnerability afforded by mitigation. To address this information gap the Bushfire and Natural Hazards CRC project “Improving the Resilience of Existing Housing to Severe Wind Events” has augmented a software tool which models damage from wind loads and associated repair cost. In this paper the development process is described including the establishment of a suite of test cases to assess the effectiveness of the software. An example of the validation work is presented along with the augmentation of the software from the previous version. Finally, use of the software in assessing the incremental effectiveness of a range of mitigation strategies in economic terms is described. Abstract submitted to/presented at the19th Australasian Wind Engineering Society Workshop.