EFTF – Exploring for the Future
Type of resources
Keywords
Publication year
Topics
-
<div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Barkly-Isa-Georgetown (BIG) region of northeastern Australia for the second partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>One-hundred and eighty eight NGSA sediment samples were selected from the HMMA project within the EFTF’s BIG polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 151 different HMs in the BIG area. The dataset, consisting of over 18 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that copper minerals cuprite and chalcopyrite may be indicative of base-metal/copper mineralisation in the area. Accompanying this report are two data files of TIMA results, and a minerals vocabulary file. </div><div>When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>
-
<div>Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about energy, mineral and groundwater resource potential. In order to address this overarching objective of EFTF program, Geoscience Australia led a key element of the Australian Government’s commitment to achieve net zero by 2050 is the adoption of hydrogen (H2) energy. The key benefit of using H2 is that it is a clean fuel, emitting only water vapour and heat when combusted. The recent discovery of a 98% pure geologic H2 gas field in Mali has captured the imagination of explorers and the search is now on for new natural H2 gas accumulations across the world. Australia is considered one of the most prospective locations for sub-surface natural H2 due to our ancient geology and presence of potentially suitable H2 traps. A review of occurrences of natural (or geologic) H2 found high concentrations of H2 gas present in central western, New South Wales (NSW). This project, in collaboration with the Geological Survey of NSW, builds on that early work and presents the results identifying new occurrences of natural H2 through soil gas surveys in various locations across central and far west, NSW. Funded through the EFTF Strategic Innovation Reserve Fund (SIRF), FrontierSI was commissioned to identify circular to sub-circular morphologies, sometimes called Fairy Circles, across parts of far west, NSW as potential locations for naturally occurring hydrogen gas deposits. This report briefly introduces hydrogen gas exploration, and its importance to Australia's future energy mix, outlines the methods used to identify circular morphologies, the results, discussion, and recommendations for future work. Specifically, currently available literature was reviewed that describes the observable features believed to be related to natural hydrogen seeps, the previous methods used as well as the variety of datasets previously explored. The aim was to utilise open-source data and earth observation datasets where possible, and work towards an automated detection method. The Digital Earth Australia (DEA) Water Observation dataset was found to include many of the known hydrogen related features in Western Australia and was used as a foundation for creating an identification methodology. A modified version of the water observation layer was used along with other datasets including vegetation cover, which was applied to help refine and remove features that did not meet the set criteria for naturally occurring hydrogen deposits. This resulted in the production of two datasets over the two areas of interest, identified by Geoscience Australia at the beginning of the project, and used by their teams for site selection.
-
Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. The first phase of the EFTF program (2016-2020) aimed to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential (Carr et al 2018). The South Nicholson Basin and immediate surrounding region is situated between Paleo-Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and McArthur Basin are well studied. By contrast, the adjacent South Nicholson region is less studied, and contains rocks that are mostly undercover, for which the basin evolution and resource potential is not well understood. To address this gap, the L210 South Nicholson Deep Crustal Seismic Survey was collected in 2017 in the region between the southern McArthur Basin to the Mount Isa western succession, crossing the South Nicholson Basin and Murphy Province, providing a fundamental data link across these regions (L210 South Nicholson Deep Crustal Seismic Reflection Survey). The primary aim of the survey was to investigate areas with a low measured gravity response in the region to determine whether they represent thick basin sequences, as is the case for the nearby prospective Beetaloo Sub-basin. The interpretation of this survey led to the discovery of a new basin, the Carrara Sub-basin, coinciding with a gravity low in the south-eastern South Nicholson Basin Region. This data set contains an exported set of XYZ points from interpreted horizons (Carr et al 2019) on the South Nicholson Seismic Survey (L210) in both two way time (TWT ms on PreSTM_17ga lines) and depth (m) re-interpreted on depth indexed PreSDM_17GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Carr, L.K., Southby, C., Henson, P., Costello, R., Anderson, J.R., Jarrett, A.J M., Carson, C.J., Gorton, J., Hutton, L.J., Troup, A., Williams, B., Khider, K., Bailey, A. & Fomin, T. 2019. Exploring for the Future: South Nicholson Basin geological summary and seismic interpretation. Record 2019/21, Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2019.021 Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A, Williams, B., Khider, K., Bailey, A.H.E., Fomin, T. 2020. South Nicholson Basin seismic interpretation. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/132029 L210 South Nicholson Deep Crustal Seismic Reflection Survey, NT and QLD, 2017. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/116881.
-
<div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994). </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>
-
<div>The Paleo- to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin straddling the Northern Territory and Western Australia and is a region of focus for the second phase of Geoscience Australia’s Exploring for the Future (EFTF) program (2020–2024). Hydrocarbon exploration in the Birrindudu Basin has been limited and a thorough assessment of the basin's petroleum potential is lacking due to the absence of data in the region. To fill this data gap, a comprehensive analytical program including organic petrology, programmed pyrolysis and oil fluid inclusion analysis was undertaken on cores from six drill holes to improve the understanding of the basin’s source rock potential and assess petroleum migration. Organic petrological analyses reveal that the primary maceral identified in the cores is alginite mainly originating from filamentous cyanobacteria, while bitumen is the most common unstructured secondary organic matter. New reflectance data based on alginite and bitumen reflectance indicate the sampled sections have reached a thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the basin. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)
-
<div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong>Australian sediment-hosted mineral systems play a crucial role in providing base metals and critical minerals essential for the global low-carbon economy. The Georgina Basin has the key components for forming and preserving a sediment-hosted Zn-Pb mineral system, but historically has been considered ‘cover’ to deeper, more prospective Proterozoic basement rocks. Thus, the basin has remained relatively under-explored, with many questions yet to be resolved on its sediment-hosted Zn-Pb mineral system and prospectivity for Zn-Pb. Utilising new whole-rock and isotope geochemistry of the Georgina Basin from recently drilled holes in the Northern Territory, we demonstrate the sensitivity of local redox boundaries to detect regional mineralisation. Two geochemically enriched zones have been identified and interpreted as redox interfaces which have trapped and concentrated metals from the surrounding basin, a ‘supergene zone’ and a ‘water intercept zone’. The ‘supergene zone’ is a paleo water table horizon, while the ‘water intercept zone’ is an active redox front at the uppermost part of the Cambrian Limestone Aquifer. The enrichment of these redox zones is consistent across multiple drill holes, reaching up to 395 ppm Pb and 1550 ppm Zn. Additionally, the Pb isotopes of high-Pb and sulfidic intervals have a highly radiogenic character (206Pb/204Pb ~22.0–23.0) that is diagnostic of Georgina Basin’s Mississippi Valley-type Zn-Pb mineralisation. Taken together, these results suggest there may be buried mineralisation in this part of the Georgina Basin, as well as highlight the potential of these redox interfaces as a regional reconnaissance target for exploration.</div><div><br></div><div><strong>Citation: </strong>Schroder I.F., Huston D. & de Caritat P., 2024. The geochemistry of redox interfaces for insights into Zn-Pb prospectivity in the Georgina Basin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149116 </div>
-
<div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005c).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148973).</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148975)</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#FI230004a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 149178)</div>