From 1 - 10 / 308
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.

  • This set of Australian landslide images illustrates the causes of landslides, both large and small, and other earth movements. A set of 15 slides with explanatory text; includes images of Thredbo, NSW, Sorrento Vic., Gracetown WA and Tasmania.

  • A geotechnical landscape map of Australia has been drawn depicting regions of constant [geological and physical] (NOT geophysical {Ed}) properties for road construction. The map, drawn at a scale of 1:2 500 000 for clarity, has a true accuracy of a 1:5 000 000 scale map, and is based on the four variables - landform, underlying lithology, soil type and [surficial] lithology - which are the principal [geological and physical] determinants for road construction. The origins and interpretation of the source maps together with a description of the legend of the geotechnical landscape map are described in this Report. Precis {Ed}: A map delineating regions with differing geotechical properties with particular application to road construction.

  • Provides regional framework study of regolith and associated landforms over the Tanami region. Datasets are all contained in a GIS - these include regolith-landform units, enhanced Landsat TM imagery, site descriptions and photo links, regolith profiles descriptions (geochemistry and PIMA), drill hole geochemistry, gamma-ray spectrometry imagery, palaeochannels, geochemical sampling strategy maps, surface flow vector maps, enhanced DEMs, erosional scarps and maps showing depth of transported cover.

  • This report provides regional information on hazard and risks posed by landslides to communities within the southeast Queensland area. Research is based on the mapping of landslides that resulted from the January 1974 rainfall event. It firstly identifies areas of potential landslide using two methodologies and then undertakes a quantitative assessment of landslide hazard and risk.

  • Several different techniques have recently been developed to rapidly map and characterise surface landforms and materials for groundwater recharge studies in Australia. In this example, in the Darling Floodplain of western New South Wales, regional landform mapping was carried out primarily using Google Earth imagery with hill-shaded LiDAR DEM and SPOT images as visual guide and some field validation. A second, more detailed map (compiled: 1:25,000; final usable scale: 1:30,000) included landform elements such as borrow pits, individual scrolls and oxbow lakes was compiled using LiDAR DEM. Prior to landform delineation, the LiDAR DEM required levelling to eliminate tilting in the landscape, by subtracting the floodplain trend surface from the DEM. This is particularly important in floodplains and river profiles where there can be as much as a 20 m difference between the upper and lower reaches. A best-fit trend surface, which provides an average estimation of change in slope along a single plane, was required to level the data. Once the LiDAR was levelled, an interactive contour tool in ArcGIS was used to generate graphic outlines of particular features at identified breaks in elevation using hill-shading, e.g. channel banks and dune bases. Slope and 3-D DEM visualisation also facilitated identification of these breaks. Further editing was required to assemble line work, convert it into polygons, and assign landform attributes. A greater number of landform classes were developed at this finer scale than for the regional scale. In many cases, specific landforms are characterised by particular surface materials, though sediment type can vary within a single landform class. SPOT imagery has been used to delineate surface materials. In summary, the combination of the two datasets - landforms and surface materials - has allowed for the identification of potential recharge site