Geology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.
-
A multi-disciplinary, hydrogeological systems mapping approach has been developed to guide development of new geological and hydrogeological conceptual models, and provide a framework for understanding complex hydrogeological and hydrogeochemical processes. Integration of the 3D mapping with hydrochemical and hydrodynamic data provides critical new insights into surface-groundwater interactions and groundwater flow. Using this approach, it has been possible to develop a new understanding of recharge processes, and identify potential recharge and groundwater flow pathways. The new datasets, knowledge and hydrogeological conceptual models provide a reliable basis for the identification, characterisation and initial assessment of groundwater resources and MAR options. To meet the challenge of rapid identification and assessment of potential MAR targets and groundwater resources over the relatively large study area (7,541.5 sq km) within relatively short timeframes (18 months), the only cost-effective method with the ability to resolve key features of the hydrogeological system in the 0-150m depth range was airborne electromagnetics (AEM). The SkyTEM system is a high-resolution helicopter-borne time-domain electromagnetic system, and was developed specifically for high-resolution groundwater and environmental investigations. The SkyTEM survey, validated by borehole and ground geophysics and drilling, successfully delineated the key functional elements of the Darling Floodplain hydrogeological system, and identified potential groundwater resources, zones of river leakage, and a large number of potential MAR targets. The survey revealed significant heterogeneity in the sub-surface electrical conductivity structure, reflecting a complex geology. The survey mapped heterogeneity (and 'holes') within the near-surface aquifers and confining aquitards, while conductivity variations validated by drilling enabled five hydraulic classes (based on grain size) to be mapped within the main aquifers, as well as groundwater salinities. Locally, pump and slug tests, and NMR data were integrated with the AEM data to produce maps of interpreted hydraulic conductivity and aquifer transmissivity. Previously unrecognised faults, and landscape warping and tilting are observed to disrupt hydrostratigraphic units. These data necessitated development of a completely new hydrogeological conceptual model for the study area. This model shows the importance of faulting and erosional 'holes' in aquitards for recharge models. Discrete vertical fault offsets up to 20m produce localised inter-aquifer leakage. Sampling of rainfall, river, lake, groundwater and pore fluids has provided a comprehensive hydrochemical dataset for the alluvial aquifers of the Darling River floodplain. Major ion chemistry highlighted a mixing signature between river waters, the shallow unconfined aquifer and the underlying semi-confined target Calivil aquifer. Hydrochemical analysis including fuzzy-k means (FCM) cluster analysis, integrated with conventional hydrochemical and hydrodynamic analysis also provides invaluable new insights into groundwater processes. Recharge is dominated by river leakage during high flows, when scouring of riverbank mud veneers allows infiltration. In summary, the new hydrogeological conceptual model of the study area has enabled a number of MAR options to be identified and assessed. The integrated, multi-disciplinary approach provides critical insights for developing appropriate conceptual models for groundwater processes and dynamics. This approach provides an invaluable tool for the rapid identification and assessment of MAR options, particularly in shallow sedimentary systems. *Note: corresponding author is Ken Lawrie, as Ross S. Brodie is currently on leave until February.
-
No abstract available
-
No abstract available
-
No abstract available
-
No abstract available
-
No abstract available
-
No abstract available
-
No abstract available
-
Produced from a 250 dpi scanned image of original out-of-print 1967 map Available as a product from NT Geological Survey or as a resource from GA Library