From 1 - 10 / 14
  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from the well Roc 2 to establish their hydrocarbon-generating potential and thermal maturity.

  • <p>Northern Australia contains extensive Proterozoic-aged sedimentary basins with potential energy, mineral, and groundwater resources concealed beneath the surface. The region is remote and largely underexplored with limited data and infrastructure and therefore is considered to have high exploration risk. Exploration for hydrocarbons and basin-hosted base metals, although perceived to have very different exploration models, share a number of important similarities and key parameters. Foremost amongst these is shale geochemistry since the same reduced, organic-rich shales are both a hydrocarbon source rock and a depositional site for base metal mineralisation. Furthermore, anoxic and euxinic (anoxic with free hydrogen sulfide, H2S) water column and sediments are important for both the preservation of organic matter and as a H2S reservoir needed for precipitation of ore minerals after reaction with oxic metalliferous brines. Here we present new organic and inorganic geochemical datasets for shales in the South Nicholson Basin, Lawn Hill Platform and greater McArthur Basin, including the organic-richness of shales and the inorganic geochemistry of redox-sensitive trace metals, to demonstrate changes in water-column chemistry and favourable base metals depositional sites. Parameters such as total organic carbon (TOC) content and redox-sensitive elemental concentrations are used to identify prospective packages with hydrocarbon and base metals mineral resource potential <p>The results reveal many units in the Lawn Hill Platform, South Nicholson Basin and greater McArthur Basin contain organic-rich rocks. A cut-off value of TOC ≥ 2 wt% is used to define several shale and carbonate sequences in the region that are favourable for both hydrocarbon generation and as base metals depositional sites. Inorganic geochemistry results demonstrate a range of paleoredox conditions, from predominantly anoxic, ferruginous conditions with deviations, to sub-oxic and euxinic conditions. Future work mapping the temporal and spatial distribution of this geochemistry, in combination with other mappable geological criteria, is required to create mineral and petroleum systems models that can define prospective fairways across the basins and increase our understanding of resource potential. <p>The precompetitive data generated in this study highlight the utility of shared geochemical datasets for resource exploration in the region. More broadly, this study improves our understanding of the energy and mineral potential across northern Australia, supporting resource decision-making and investment.

  • Exploring for the Future Roadshow- Regional petroleum systems visualised in the EFTF Data Discovery Portal. A summary of petroleum systems of the Canning Basin and regional Meso- and Paleoproterozoic basins of northern Australia, and an introduction to the EFTF Data Discovery Portal

  • <p>Geoscience Australia's Oracle organic geochemical database comprises analytical results for samples relevant to petroleum exploration, including source rocks, crude oils and natural gases collected across the Australian continent. The data comprises organic chemical analyses of hydrocarbon-bearing earth materials as well as including connectivity to some inorganic analyses. These data enable petroleum fluids to be typed into families and correlated to their source rock, from which depositional environment, age, and migration distances can be determined, and hence the extent of the total petroleum system can be mapped. This comprehensive data set is useful to government for evidence-based decision making on natural resources and the petroleum industry for de-risking conventional and unconventional petroleum exploration programs. <p>The data are produced by a wide range of analytical techniques. For example, source rocks are evaluated for their bulk compositional characteristics by programmed pyrolysis, pyrolysis-gas chromatography and organic petrology. Natural gases are analysed for their molecular and isotopic content by gas chromatography (GC) and gas chromatography-temperature conversion-mass spectrometry (GC-TC-IRMS). Crude oils and the extracts of source rocks are analysed for their bulk properties (API gravity; elemental analysis) and their molecular (biomarkers) and isotopic (carbon and hydrogen) content by GC, gas chromatography-mass spectrometry (GCMS) and GC-TC-IRMS. <p>The sample data originate from physical samples, well completion reports, and destructive analysis reports provided by the petroleum industry under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. The sample data are also sourced from geological sampling programs in Australia by Geoscience Australia and its predecessor organisation's Australian Geological Survey Organisation (AGSO) and Bureau of Mineral Resources (BMR), and from the state and territory geological organisations. Geoscience Australia generates data from its own laboratories. Other open file data from publications, university theses and books are also included <b>Value:</b> The organic geochemistry database enables digital discoverability and accessibility to key petroleum geochemical datasets. It delivers open file, raw petroleum-related analytical results to web map services and web feature services in Geoscience Australia’s portal. Derived datasets and value-add products are created based on calculated values and geological interpretations to provide information on the subsurface petroleum prospectivity of the Australian continent. For example, the ‘Oils of Australia’ series and the ‘characterisation of natural gas’ reports document the location, source and maturity of Australia’s petroleum resources. Details of the total petroleum systems of selected basins studied under the Exploring for the Future project can be found in the Petroleum Systems Summaries Tool in Geoscience Australia’s portal. Related Geoscience Australia Records and published papers can be obtained from eCat. <b>Scope:</b> The collection initially comprised organic geochemical and petrological data on organic-rich sedimentary rocks, crude oils and natural gas from petroleum wells drilled in the onshore and offshore Australian continent. Over time, other sample types (ground water, fluid inclusions, mineral veins, bitumen) from other borehole types (minerals, stratigraphic – including the Integrated Ocean Drilling Program), marine dredge samples and field sites (outcrop, mines, surface seepage samples) have been analysed for their hydrocarbon content and are captured in the database. Results for many of the oil and gas samples held in the Australian National Offshore Wells Data Collection are included in this database.

  • The Browse Basin is located offshore on Australia’s North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate. Oil reserves in the area are small with most in-place oil likely the result of hydrocarbon fluids experiencing pressures less than their saturation pressure resulting in dual phase fluids, coupled with secondary alteration processes and gas leakage. This study reviews the distribution, quality and maturity of source rocks and fluid characteristics in the Browse Basin. All publicly-available Total Organic Carbon (TOC) and Rock-Eval pyrolysis data were compiled and quality checked to determine multiple, viable source rock units. Jurassic and Cretaceous source rock distributions and net thickness were studied using integrated seismic and well log lithofacies mapping, combined with organic geochemistry data. Source rock transformation ratio and generation potential were investigated using a regional pseudo-3D petroleum systems model constructed from new seismic interpretations and calibrated using temperature and maturity data from 34 wells. Results show that the Jurassic Plover Formation (J10-J20 supersequences) coals and carbonaceous shales are effective, primarily gas-prone source rocks which may have some liquid potential when the generated gas migrates into shallow reservoirs at reduced pressures. Additional sources of hydrocarbons include shales in the Upper Jurassic lower Vulcan Formation (J40 supersequence), Lower Cretaceous upper Vulcan Formation (K10 supersequence) and Echuca Shoals Formation (K20-K30 supersequences). However, these are likely to have only expelled hydrocarbons locally in areas of optimal organic-richness and maturity. Key uncertainties include TOC and HI variability due to lack of well penetration in the depocentres. The molecular composition of the fluids were compiled and quality checked and used to investigate the relationship between the saturation pressure and condensate-gas ratio (CGR). By combining the bulk properties and molecular and isotopic compositions of the fluids with the geochemical compositions of the source rocks in a petroleum systems model, four Mesozoic petroleum systems have been identified and mapped to help understand the source rock potential and fluid characters for the Browse Basin.

  • This petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the South Nicholson Basin and Isa Superbasin region. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarizing key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.

  • <div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The pyrolysis-gas chromatography database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) database and supporting oracle databases for open system pyrolysis-gas chromatography (pyrolysis-GC) analyses performed on either source rocks or kerogen samples taken from boreholes and field sites. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The analyses are undertaken by various laboratories in service and exploration companies using a range of instruments. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of the pyrolysates. The concentrations of the aliphatic hydrocarbon, aromatic hydrocarbon and organic sulfur compounds are given in several units of measure [e.g., percent (resolved compounds) in the S2 peak (wt% S2), milligrams per gram of rock (mg/g rock), micrograms per gram of kerogen (mg/g kerogen) etc.].</div><div><br></div><div>These data are used to determine the organic richness, kerogen type and thermal maturity of source rocks in sedimentary basins. The results are used as input parameters in basin analysis and petroleum systems modelling to evaluate the potential for hydrocarbon generation in a sedimentary basin. These data are collated from destructive analysis reports (DARs), well completion reports (WCRs) and literature. The data are delivered in the Source Rock Pyrolysis-Gas Chromatography web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div>

  • <b>Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas</b> The databases tables held within Geoscience Australia's Oracle Organic Geochemistry (ORGCHEM) Schema, together with other supporting Oracle databases (e.g., Borehole database (BOREHOLE), Australian Stratigraphic Units Database (ASUD), and the Reservoir, Facies and Shows (RESFACS) database), underpin the Australian Source Rock and Fluid Atlas web services and publications. These products provide information in an Australia-wide geological context on organic geochemistry, organic petrology and stable isotope data related primarily to sedimentary rocks and energy (petroleum and hydrogen) sample-based datasets used for the discovery and evaluation of sediment-hosted resources. The sample data provide the spatial distribution of source rocks and their derived petroleum fluids (natural gas and crude oil) taken from boreholes and field sites in onshore and offshore Australian provinces. Sample depth, stratigraphy, analytical methods, and other relevant metadata are also supplied with the analytical results. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The data in the ORGCHEM schema are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, state and territory geological organisations and scientific institutions including the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and universities. Data entered into the database tables are commonly sourced from both the basic and interpretive volumes of well completion reports (WCR) provided by the petroleum well operator to either the state and territory governments or, for offshore wells, to the Commonwealth Government under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. Data are also sourced from analyses conducted by Geoscience Australia’s laboratory and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR). Other open file data from company announcements and reports, scientific publications and university theses are captured. The ORGCHEM database was created in 1990 by the BMR in response to industry requests for organic geochemistry data, featuring pyrolysis, vitrinite reflectance and carbon isotopic data (Boreham, 1990). Funding from the Australian Petroleum Cooperative Research Centre (1991–2003) enabled the organic geochemical data to be made publicly available at no cost via the petroleum wells web page from 2002 and included BOREHOLE, ORGCHEM and the Reservoir, Facies and Shows (RESFACS) databases. Investment by the Australian Government in Geoscience Australia’s Exploring for the Future (EFTF) program facilitated technological upgrades and established the current web services (Edwards et al., 2020). The extensive scope of the ORGCHEM schema has led to the development of numerous database tables and web services tailored to visualise the various datasets related to sedimentary rocks, in particular source rocks, crude oils and natural gases within the petroleum systems framework. These web services offer pathways to access the wealth of information contained within the ORGCHEM schema. Web services that facilitate the characterisation of source rocks (and kerogen) comprise data generated from programmed pyrolysis (e.g., Hawk, Rock-Eval, Source Rock Analyser), pyrolysis-gas chromatography (Py-GC) and kinetics analyses, and organic petrological studies (e.g., quantitation of maceral groups and organoclasts, vitrinite reflectance measurements) using reflected light microscopy. Collectively, these data are used to establish the occurrence of source rocks and the post-burial thermal history of sedimentary basins to evaluate the potential for hydrocarbon generation. Other web services provide data to characterise source rock extracts (i.e., solvent extracted organic matter), fluid inclusions and petroleum (e.g., natural gas, crude oil, bitumen) through the reporting of their bulk properties (e.g., API gravity, elemental composition) and molecular composition using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Also reported are the stable isotope ratios of carbon, hydrogen, nitrogen, oxygen and sulfur using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and noble gas isotope abundances using ultimate high-resolution variable multicollection mass spectrometry. The stable isotopes of carbon, oxygen and strontium are also reported for sedimentary rocks containing carbonate either within the mineral matrix or in cements. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids, which comprise two key elements of petroleum systems analysis. Understanding a fluid’s physical properties and molecular composition are prerequisites for field development. The composition of petroleum determines its economic value and hence why the concentration of hydrocarbons (methane, wet gases, light and heavy oil) and hydrogen, helium and argon are important relative to those of nitrogen, carbon dioxide and hydrogen sulfide for gases, and heterocyclic compounds (nitrogen, oxygen or sulfur) found in the asphaltene, resin and polar fractions of crude oils. The web services and tools in the Geoscience Australia Data Discovery Portal (https://portal.ga.gov.au/), and specifically in the Source Rock and Fluid Atlas Persona (https://portal.ga.gov.au/persona/sra), allow the users to search, filter and select data based on various criteria, such as basin, formation, sample type, analysis type, and specific geochemical parameters. The web map services (WMS) and web feature services (WFS) enable the user to download data in a variety of formats (csv, Json, kml and shape file). The Source Rock and Fluid Atlas supports national resource assessments. The focus of the atlas is on the exploration and development of energy resources (i.e., petroleum and hydrogen) and the evaluation of resource commodities (i.e., helium and graphite). Some data held in the ORGCHEM tables are used for enhanced oil recovery and carbon capture, storage and utilisation projects. The objective of the atlas is to empower people to deliver Earth science excellence through data and digital capability. It benefits users who are interested in the exploration and development of Australia's energy resources by: • Providing a comprehensive and reliable source of information on the organic geochemistry of Australian source rocks • Enhancing the understanding of the spatial distribution, quality, and maturity of petroleum source rocks. • Facilitating the mapping of total petroleum and hydrogen systems and the assessment of the petroleum and hydrogen resource potential and prospectivity of Australian basins. • Facilitating the mapping of gases (e.g., methane, helium, carbon dioxide) within the geosphere as part of the transition to clean energy. • Enabling the integration and comparison of data from diverse sources and various acquisition methods, such as geological, geochemical, geophysical and geospatial data. • Providing data for integration into enhanced oil recovery and carbon capture, storage and utilisation projects. • Improving the accessibility and usability of data through user-friendly and interactive web-based interfaces. • Promoting the dissemination and sharing of data among Government, industry and community stakeholders. <b>References</b> Australian Petroleum Cooperative Research Centre (APCRC) 1991-2003. Australian Petroleum CRC (1991 - 2003), viewed 6 May 2024, https://www.eoas.info/bib/ASBS00862.htm and https://www.eoas.info/biogs/A001918b.htm#pub-resources Boreham, C. 1990. ORGCHEM Organic geochemical database. BMR Research Newsletter 13. Record 13:10-10. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/90326 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751. <b>Citation</b> Edwards, D., Buckler, T. 2024. Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422

  • This petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the Canning Basin. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarising key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment of the hydrocarbon prospectivity of the region.