From 1 - 10 / 142
  • Geoscience Australia's GEOMACS model was utilised to produce hindcast hourly time series of continental shelf (~20 - 300 m depth) bed shear stress (unit of measure: Pascal, Pa) on a 0.1 degree grid covering the period March 1997 to February 2008 (inclusive). The hindcast data represents the combined contribution to the bed shear stress by waves, tides, wind and densitydriven circulation. The geometric mean was calculated using the formula where is the total number of model observations of the bed shear stress . The geometric mean was used alongside the trimmed mean to provide a more robust representation of the bulk of the values than the arithmetic mean would have provided (Hughes & Harris 2008).

  • Discerning how marine ecosystems are linked through larval dispersal is essential for understanding demographic flow, investigating the development of population genetic structure, and for evaluating the potential responses of communities to climate change. This information is of critical importance when designing reserve networks, identifying key locations for restoration, controlling invasive species, and administering transboundary resources. As part of Geoscience Australia's commitment to the National Environmental Research Programme's Marine Biodiversity Hub, we have developed a fully four-dimensional (3D space x time) individual-based model that embeds artificially intelligent particles within real-world ocean flow fields, making it possible to examine expected dispersal patterns of marine larvae under a variety of conditions. The model fuses strategic biological behaviour with physical equations in a flexible manner through the use of object-oriented programming. We will discuss aspects of model development and testing, as well as practical issues relating to computing on the National Computing Infrastructure, and addressing large-scale data storage. We will also identify potential avenues for data analysis that can be used to inform environmental decision-making.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. jb_s3 is an ArcINFO grid of southern part of Jervis Bay survey area (south3 is part of Darling RD grid) produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • Northern Australia has been the focus of recent marine biodiversity research to support resource management for both industry and conservation. Much of this research has targeted habitat-forming sessile invertebrates and charismatic megafauna, but smaller macrofauna and infauna must also be considered due to their important roles in ecosystem functions. In this study, a Smith-McIntyre grab was used during two surveys in 2009 and 2010 to the Joseph Bonaparte Gulf to collect sediment samples which were then elutriated over a 500µm sieve. The associated polychaetes were identified to species-level. A total of 2224 individual polychaetes were collected from 133 grabs and represent 43 families, including several new species, at least one new genus (Pilargidae) and many new distribution records. Biodiversity patterns were also analysed according to environmental and spatial factors (grain-size, carbonate, total organic content, depth, distance offshore) in order to inform predictive models and further our understanding of ecosystem processes in the region. These patterns differ from those of larger epifauna collected on the same surveys, highlighting the need to consider small macrofauna in biodiversity research and associated marine management.

  • Baseline information on biodiversity and habitats is required to manage Australia's northern tropical marine estate. This study aims to develop an improved understanding of seafloor environments of the Timor Sea. Clustering methods were applied to a large dataset comprising physical and geochemical variables which describe organic matter (OM) reactivity/quantity/source and geochemical processes. Infauna data were used to assess different groupings. Clusters based on physical/geochemical data discriminated infauna better than geomorphic features. Major variations amongst clusters included grainsize and a cross-shelf transition in from authigenic-Mn /As enrichments (inner shelf) to authigenic-P enrichment (outer shelf). Groups comprising raised features had the highest reactive OM concentrations (e.g. low chlorin indices and C:N-ratios, and high k) and benthic algal '13C signatures. Surface area normalised OM concentrations higher than continental shelf norms were observed in association with: (i) low -15N, inferring Trichodesmium input; and (ii) pockmarks, which impart bottom-up controls on seabed chemistry and cause inconsistencies between bulk and pigment OM pools. Low Shannon-Wiener diversity occurred in association with low redox and porewater pH and evidence for high energy. Highest beta-diversity was observed at euphotic depths. Geochemical data and clustering methods used here provide insight into ecosystem processes influencing biodiversity patterns in the region.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. jb_s1 is an ArcINFO grid of southern part of Jervis Bay survey area (south1 is part of Darling RD grid) produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • Geoscience Australia's GEOMACS model was utilised to produce hindcast hourly time series of continental shelf (~20 - 300 m depth) bed shear stress (unit of measure: Pascal, Pa) on a 0.1 degree grid covering the period March 1997 to February 2008 (inclusive). The hindcast data represents the combined contribution to the bed shear stress by waves, tides, wind and densitydriven circulation. Included in the parameters that represent the magnitude of the bulk of the data are the quartiles of the distribution; Q25, Q50 and Q75 (i.e. the values for which 25, 50 and 75 percent of the observations fall below). Q50, or the 0.50 Quartile of the Geomacs output, represents the values for which 50% of the observations fall below (Hughes & Harris 2008).

  • Although marine reserves are becoming increasingly important as anthropogenic impacts on the marine environment continue to increase, we have little baseline information for most marine environments. We use a species-level inventory compiled from three marine surveys to the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Are there environmental or biogeographic variables that can help explain local and regional differences in community structure? 3) How do sponge communities differ between individual raised geomorphic features? Approximately 750 sponge specimens were collected and assigned to 348 species, of which only 18% included taxonomically described species. Between the eastern and western CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Within individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. There were no environmental factors related to sponge species richness, although sponge assemblages were weakly but significantly related to several environmental variables. These patterns of sponge diversity are considered in the context of marine reserve management in order to explore how such information may help support the future management of this region at multiple spatial scales.

  • Promotional magnetic panel produced for the conference booth to be used at seabed mapping conferences. The panel highlights research conducted by Geoscience Australia in mapping and modelling processes that occur in Australian submarine canyons under the National Enrvironmental Research Program.

  • The Jervis Bay Multibeam 2 survey, was acquired by Geoscience Australia after the purchase of the new shallow bathymetry acquisition systems Kongsberg EM3002D. This system is a mobile and compact system that can be installed on different vessels. This survey was acquired by the DSTO vessel, RV Kimbla during the 31st of May to the 5 of June 2008. The survey location was in Jervis Bay. The aim of the survey was to test the new bathymetry acquisition system and to acquire geophysical data on the shallow water (less than 100m water depth) seabed environment. The bathymetry grids are of 1m resolution projected in Easting and Northing WGS84 UTM 56S