From 1 - 10 / 3958
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). This file identifes the storm tide inundation extent for a specific Average Recurrence Interval (ARI) event. Naming convention: SLR = Sea Level Rise s1a4 = s1 = Stage 1(extra-tropical storm tide), s2 = Stage 2 (tropical cyclone storm tide) (relating to Haigh et al. 2012 storm tide study), a4 = area 4 and a5 = area 5 2p93 = Inundation height, in this case 2.93 m Dice = this data was processed with the ESRI Dice tool.

  • The data represents the possibility that the substrate is rocky. It was created from the averaged topographic relief layer. The data values range from 0 to 100.

  • Depth soundings were collected for the ship mooring area of the Christmas Island Port in August 2012. This data was provided to Geoscience Australia by PRL (James Keogh) in July 2013. The data includes the original soundings, 0.5m contours, a terrain model image, and an outline of the mooring area.

  • This dataset represents the ascending (ersarc_region) and decending (ersdesc_region) paths of the ERS satellite.

  • This dataset forms part of the Perth Metropolitan area and Regional Centres digital topographic data coverage. It has been collected via the State Land Information Capture Program (SLICP) using digital photogrammetric methods. All map tiles contain: relief, drainage and culture themes and vegetation cover where it interrupts detail. The status of coverage is available either directly or via remote access to DLIÂ’s website

  • These datasets cover approximately 30 sq km over the Mornington Island Community and are part of the 2006 North Queensland Communities LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground or non-ground) - Ground-classified LiDAR returns in XYZ format - non-ground classified LiDAR returns in XYZ format

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measured in km/h.

  • The navigation data comprises of clipped seismic navigation (three surveys which have been reprocessed) from Deep Seismic Marine Data Navigation Tracks from RV Rig Seismic {National Geoscience Dataset}, and a selection of industry derived seismic over the bass basin. The datasets are as follows:- ga_reprocessed_line.shp, ga_reprocessed_shot.shp Reprocessed seismic of AGSO Survey 040, AGSO Survey 082, AGSO Survey 090 * industry_line.shp Seismic navigation only, shot by industry and obtained from state governments *sniffer_089_lines.shp & sniffer_089_points.shp The 'Sniffer' or Direct Hydrocarbon Detection (DHD) technique used to detect hydrocarbon seepage offshore involves towing a submerged tow-fish close to the seafloor and continuously pumping seawater into a geochemical laboratory on board where the hydrocarbons are extracted and measured by gas chromatography. The Direct Hydrocarbon Detection (DHD) method continuously analyses C1-C8 hydrocarbons within seawater.