From 1 - 10 / 707
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • Long-period magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, the identification of which is an important element of several mineral system models. Given the importance of these data, governments and academia have united under the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to collect long-period MT data across the continent on a ~55 km-spaced grid. Here, we use AusLAMP data to demonstrate the MT method as a regional-scale tool to identify and select prospective areas for mineral exploration undercover. We focus on the region between Tennant Creek in the Northern Territory and east of Mount Isa in Queensland. Our results image major conductive structures up to 150 km deep in the lithosphere, such as the Carpentaria Conductivity Anomaly east of Mount Isa. This anomaly is a significant lithospheric-scale conductivity structure that shows spatial correlations with a major suture zone and known iron oxide–copper–gold deposits. Our results also identify similar features in several under-explored areas that are now considered to be prospective for mineral discovery. These observations provide a powerful means of selecting frontier regions for mineral exploration undercover.. <b>Citation:</b> Duan, J., Kyi, D., Jiang, W. and Costelloe, M., 2020. AusLAMP: imaging the Australian lithosphere for resource potential, an example from northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Geoscience Australia’s Exploring for the Future Program is investigating the mineral, energy and groundwater resource potential of sedimentary basins and basement provinces in northern Australia and parts of South Australia. A key challenge in exploring Australian onshore sedimentary basins is that these are often areas with limited seismic data coverage to image the sub-surface structural and stratigraphic architecture. Consequently, well logs are often the main data sets that are used to understand the sub-surface geology. Where good seismic data coverage is available, a considerable amount of time is generally required to undertake an integrated interpretation of well and seismic data. The primary aim of this study is to develop a methodology for visualising the three-dimensional tectonostratigraphic architecture of sedimentary basins using just well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. A workflow is documented which generates three-dimensional well correlations using just well formation tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. A critical step in the workflow is defining regionally correlatable supersequences that show the spatial linkages and evolution through time of lithostratigraphic units from different basin areas. Thirteen supersequences are defined for the Centralian Superbasin, which were deposited during periods of regional subsidence associated with regional tectonic events. Regional three-dimensional correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used as a reconnaissance tool for visualising the distribution of key stratigraphic elements associated with petroleum, mineral and groundwater systems. Three-dimensional well correlations are used in this study to redefine the Centralian Superbasin as encompassing all western, northern and central Australian basins that had interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during a series of Neoproterozoic rift-sag events associated with the break-up of the Rodinia Supercontinent at about 830 Ma. Depositional systems in the Amadeus and Officer basins were partially disconnected by an emergent Musgrave Province during these early stages of superbasin evolution. Subsequent regional uplift and erosion of the superbasin occurred during the late Neoproterozoic–early Cambrian Petermann Orogeny. The Officer and Amadeus were permanently disconnected by the uplifted Musgrave Province following this major orogenic event. Rejuvenation of the Centralian Superbasin occurred during middle–late Cambrian extension and subsidence resulting in the generation of several new basins including the Canning Basin. Subsidence during the Ordovician Larapinta Event created an intracontinental seaway that episodically connected the Canning, Amadeus, Georgina and Officer basins to the proto-Pacific Ocean in the east. Fragmentation of the Centralian Superbasin began at the onset of the Alice Springs Orogeny during the Rodingan Event when the uplifted Arunta Region disconnected the Amadeus and Georgina basins. The Rodingan Movement initially disconnected depositional systems between the Canning and Amadeus basins, which promoted the development of a large evaporitic depocentre over the southern Canning Basin. However, these basins subsequently reconnected during the Early Devonian Prices Creek Movement. Complete fragmentation of the Centralian Superbasin occurred during the Late Devonian–middle Carboniferous Pillara Extension Event when the Canning and Amadeus basins became permanently disconnected. Widespread uplift and erosion at the culmination of the Alice Springs Orogeny in the middle Carboniferous resulted in final closure of the Centralian Superbasin.

  • Geoscience Australia, in collaboration with state government agencies, has been collecting magnetotelluric (MT) data as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) for several years. This program aims to map the electrical resistivity of the rock layers, at depths from ten kilometres to hundreds of kilometres, across the entire continent. AusLAMP sites are each about 55 km apart from each other. Locations are chosen in consultation with landholders and other stakeholders to minimise impacts and avoid disturbance.MT data is collected using sensors that record naturally occurring variations of the Earth’s magnetic and electric fields. The equipment does not produce or transmit and signals. After four to six weeks the equipment is retrieved and the site restored to its original condition.

  • The AusArray program aims to install small temporary passive seismic stations every 200 km across Australia. The seismic stations will passively measure small natural vibrations that travel through the Earth to help scientists understand the distribution and composition of rocks beneath the ground. Seismometers are sensitive instruments used to measure small natural vibrations that travel through the Earth caused by earthquakes, waves breaking on the shore and even wind. The data collected are analysed to create a three-dimensional model of the Earth’s subsurface. Passive seismic data can be used to model the Earth‘s structure, which is used to infer the geological history and assess the resource potential and natural hazards of the region.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • This fact sheet sets out the goals, vision and benefits of the Exploring for the Future program, as well as the ways we conduct fieldwork and what the information gathered is used for.

  • As part of the Exploring for the Future program, whole-of-crust 3D gravity and magnetic inversion models have been produced for an area encompassing the North Australia Craton. These models were created to aid 3D geological mapping and identification of large-scale mineral systems such as those associated with iron oxide copper-gold deposits. The inversion models were derived using the University of British Columbia - Geophysical Inversion Facility MAG3D and GRAV3D programs. The inversions were constrained with geological reference models that had layers for Phanerozoic sediments, Proterozoic sediments, undifferentiated crust and the mantle. The reference model for the magnetic inversion incorporated a Curie depth surface below which magnetic susceptibility was set to zero. To allow cross-referencing, both the density and magnetic susceptibility models were designed to occupy the same physical space with identical volumes and cell sizes. A horizontal cell size of 1 km was used with 61 vertical layers, whose thickness increased with depth. The area of interest is 2450 km by 1600 km and extends to a depth of 70 km below the geoid, resulting in a total volume with ~239 million cells. Ultimately, it was not possible to invert a model of this size. Instead, the volume was broken down into a grid of overlapping tiles with 8 rows and 10 columns. Each tile was independently inverted before being recombined into a single coherent output model. When the overall model was reconstructed using the core region of each tile, some low-level edge effects were observed, increasing in significance with depth. These effects were satisfactorily attenuated by applying cosine weighting from the centre of each tile out to the edge of the overlap region during reconstruction. The coincident density and magnetic susceptibility models show a relationship with known iron oxide copper-gold deposits and regions of >2.80 g/cm3 and >0.01 SI in the Tennant Creek and Cloncurry regions. It is suggested that these regions of high-density and high-magnetic susceptibility are related to the magnetite-forming hydrothermal alteration stages of an iron oxide copper-gold deposit. The success of the NAC modelling exercise has demonstrated that this method can be expanded to produce coincident gravity and magnetic inversion models for the entire Australian region. ------------------------------------------------------------------------------------------ DOWNLOADS ------------------------------------------------------------------------------------------ Input Data: The input gravity, magnetic and elevation data (.ers and .tif). Geological Reference Models: The geological reference model as surfaces and 3D volumes (.sg, .ts, and UBCGIF). Observed vs Predicted Data: The input gravity/magnetic data compared to the predicted data (.png). Recombined Models: The recombined (cosine weighted) density and magnetic susceptibility models (.sg, and UBCGIF). Magnetite Proxies: Proxies for magnetite alteration related to IOCG deposits (.ers). Video: Video describing the method and results (.mp4).