EFTF
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.
-
<div>As part of the EFTF Program, Geoscience has completed a 4-year multi-disciplinary study to investigate the energy resource potential of selected onshore basins within central Australia under the Australia’s Future Energy Resources (AFER) Project. A key component of the AFER Project has been a qualitative and quantitative play-based assessment of hydrocarbon resources and geological storage of CO2 (GSC) potential within the Pedirka and western Eromanga basins (Bradshaw et al., 2024a). This study has provided a regional interpretive data set which includes regional seismic and well log interpretations (Bradshaw et al. 2024b, 2024c); depth-structure and isochore maps for 14 play intervals (Iwanec et al., 2024); gross-depositional environment maps for 14 play intervals (Bradshaw et al., 2024c); and petrophysical analysis of wireline log data from 23 wells (Spicer et al., 2024). This report provides a high-level summary of the hydrogeology of Pedirka and western Eromanga basins as background information for the other assessments and some findings from the 3D models that may inform future understanding of the hydrogeology of these basins. </div><div><br></div><div>The assessment area extends over ~210,000 km2 across the Northern Territory, South Australia and Queensland (Figure 1). Much of the assessment area underlies national parks in South Australia and Queensland. No petroleum exploration access is allowed in the Munga Thirri Simpson Desert Conservation Park or the Witjira National Park (Dalhousie Springs area) in South Australia or Munga Thirri National Park in Queensland (Figure 1).</div><div><br></div><div>The AFER assessment area is situated within the Kati Thanda-Lake Eyre surface water catchment. The catchment’s arid climate and ephemeral river flow regime (Evans et al., 2024) makes groundwater a critical source of water for the environment, industry and communities, especially during dry periods. Groundwater dependent features in the region include water supplies for communities, industry and pastoral stations, as well as springs and other groundwater dependent ecosystems. Groundwater resources are managed by state and territory jurisdictions (see: NT Government, 2013; Queensland Government, 2017, SA Government, 2021). Across the three jurisdictions, the most important groundwater resources are those of the western Eromanga Basin (a part of Great Artesian Basin or GAB). In collaboration with state jurisdictions the Commonwealth provides a cross-jurisdictional policy framework for the GAB as well as the Lake Eyre surface water basin (DCCEEW, 2024). Key management goals include maintaining artesian pressures, water quality and viability of GAB dependent ecosystems, including springs. </div><div><br></div><div><br></div><div><br></div>
-
The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.
-
The Exploring for the Future program Showcase 2022 was held on 8-10 August 2022. Day 1 (8th August) included a talk on: - Exploring for the Future - The value of precompetitive geoscience - Dr Andrew Heap Showcase Day 1 https://youtu.be/M9jC_TyovCc
-
This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.
-
This report presents groundwater levels results from the East Kimberley groundwater project in the Northern Territory (NT), conducted as part of Exploring for the Future (EFTF), an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The East Kimberley groundwater project is a collaborative study between Geoscience Australia and State and Territory partners. It focuses on groundwater resources in the Keep River Plains of the NT. This report describes a data release of groundwater levels based on measurements collected in monitoring bores during the EFTF project. The full report includes: • A full description of how water levels in metres relative to Australian Height Datum (m AHD; where zero m AHD is an approximation of mean sea level) were calculated from manual dips and electronic data loggers for this project. • A series of tables in Appendix A containing sufficient information for each bore and datalogger file to reproduce the water levels reported in Appendix B and Appendix C. • A series of hydrographs in Appendix B showing how water levels (in m AHD) interpreted from manual dips and datalogger files varied during the EFTF project. • A series of electronic files in Appendix C that include - Data files from dataloggers in CSV file format that can be used with the information contained in this data release to regenerate the water levels shown on hydrographs in Appendix A. - Data files in CSV file format reporting the final water levels used to generate the hydrographs in Appendix B.
-
This web service delivers geological observations and sample descriptions from field sites associated with GA's geological mapping surveys in Australia and Antarctica. Descriptions include information on lithology, stratigraphic units, alteration, structural measurements, and many other geological attributes. Where possible this service conforms to the GeoSciML version 4.1 data standard.
-
The Energy component of Geoscience Australia’s Exploring for the Future (EFTF) Programme is aimed at improving our understanding of the petroleum resource potential of northern Australia, in partnership with the state and territory geological surveys. The sediments of the Mesoproterozoic South Nicholson Basin and the underlying Paleoproterozoic Isa Superbasin in the Northern Territory and Queensland are amongst the primary targets of the EFTF Energy program as they are known to contain organic rich sedimentary units with the potential to host unconventional gas plays, although their subsurface extent under the cover of the Georgina Basin is presently unknown. In order to economically produce from unconventional reservoirs, the petrophysical rock properties and in-situ stresses must be conducive to the creation of secondary permeability networks that connect a wellbore to as large a reservoir volume as possible. This study utilises data from the recently drilled Armour Energy wells Egilabria 2, Egilabria 2-DW1, and Egilabria 4 to constrain rock properties and in-situ stresses for the Isa Superbasin sequence where intersected on the Lawn Hill Platform of northwest Queensland. These results have implications for petroleum prospectivity in an area with proven gas potential, which are discussed here in the context of the rock properties and in-situ stresses desired for a viable shale gas play. In addition, this has relevance to potential future exploration across the broader Isa Superbasin sequence.
-
This Record presents a compilation of publicly-available U–Pb geochronology from Queensland (QLD), Northern Territory (NT), Western Australia (WA) and the most northerly parts of South Australia (SA) and New South Wales (NSW). It represents a step towards a comprehensive U–Pb geochronology compilation for all of Australia. The Appendix A dataset expands upon the data coverage previously compiled by Anderson et al. (2017). It includes >1400 additional data points from WA and NT, building the compilation to more than 3600 sample points.
-
Mineral exploration in Australia faces the challenge of declining discovery rates despite continued exploration investment. The UNCOVER roadmap, developed by stakeholders from industry, government and academia, has highlighted the need for discovering mineral resources in areas of cover. In these areas, potentially prospective basement is covered by regolith, including transported sediment, challenging many traditional exploration methods designed to probe outcrop or shallow subcrop. Groundwater-mineral interaction in the subsurface has the potential to give the water geochemical and isotopic characteristics that may persist over time and space. Geoscience Australia’s hydrogeochemistry for mineral exploration project, part of the Exploring for the Future Programme, aims to use groundwater chemistry to better understand the bedrock-regolith system and develop new methods for recognising mineral system footprints within and below cover. During the 2017 dry season (May to September), ~150 groundwater samples (including QC samples) were collected from pastoral and water supply bores in the regions of Tennant Creek and McArthur River, Northern Territory. The Tennant Creek region has a demonstrated iron oxide-hosted copper-gold-iron(-bismuth) mineral potential in the Paleoproterozoic and Mesoproterozoic basement and vast areas of regolith cover. Among the critical elements of this mineral system, the presence/absence of redox contrasts, iron enrichment, presence of sulfide minerals, and carbonaceous intervals can potentially be diagnosed by the elemental and isotopic composition of groundwater. The McArthur River region, in contrast, has demonstrated sediment-hosted stratiform lead-zinc-silver mineral potential in the Paleoproterozoic to Neoproterozoic basement and also vast areas of regolith cover. Here, critical mineral system elements that have the potential to be identified using groundwater geochemistry include the presence of felsic rocks (lead source), carbonate rocks (zinc source), basinal brines, dolomitic black shales (traps), and evaporite-rich sequences. Preliminary results will be presented and interpreted in the context of these mineral systems.