From 1 - 10 / 19
  • 3D seismic survey polygon area. The data within this layer only contains high level information regarding the individual surveys, not the actual survey. NOPIMS data is supplied by the petroleum industry. NOPIMS data is only offshore petroleum that belongs to the Commonwealth. A two dimensional (3D) seismic survey is a method of exploration used to capture seismic data beneath Earth's surface. 3D seismic provides continuous information of the subsurface within the extent of the survey. transect line of information in the survey. This method sends energy waves into the Earth to detect changes in the subsurface geology. The rock formations in the subsurface geology reflect the waves back to detector, where they are captured over the desired timeframe and converted into a seismic image. Depending on the age the survey was conducted will depend on the method used to capture the information. Older records more likely used explosives to capture seismic data whereas newer surveys use compressed air.

  • The EGGS database contains point depths to chronostratigraphic surfaces obtained from boreholes and four magnetic modelling methods. In regards to the depths obtained from inclined boreholes there are uncertainties on their measurement of the true vertical depths. These are currently being looked into and would be resolved in due course. Future development will include AEM, reflection seismic, MT and passive seismic. A Web Service will allow the public to download this data and will be accessed through the EFTF (Exploring for the Future) web portal.

  • <b>This record has been superseded by eCat 126310</b> <p>Geoscience Australia defines a borehole as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally, and includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. <p>For the purpose of a borehole as defined by GeoSciML Borehole, the dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • Presentation for the Exploring for the Future Roadshow presentation about the Kidson Sub-basin seismic survey, Waukarlycarly-1 stratigraphic well, in addition to the Centralian Super Basin well correlation study.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This package contains data generated in the field as part of stratigraphic drilling operations in the Delamerian region of the western New South Wales during 2023 funded through the Exploring for the Future program. A range of geological, geophysical and geochemical data are included, as well as associated borehole information such as core photographs. The data can be viewed and downloaded via the Geoscience Australia Portal - https://portal.ga.gov.au/. The data that is available is from several databases which are associated to this record. <i>These data are published with the permission of the CEO, Geoscience Australia. </i>

  • This web service provides links to access pictures and documents for any geological or geophysical feature data that are delivered by complementary feature services for these data, including but not limited to: boreholes, field sites, structures, stratigraphic units, samples, mines, mineral deposits and mineral occurrences, along with descriptions of those objects.

  • <div>Geoscience Australia's geoscientific relational databases use look-up tables to describe the data stored within. These look-ups contain, but are not limited to, information about boreholes, field geology, inorganic and organic geochemistry, hydrochemistry, geophysics, rock properties, samples and other general geological terms. These terms have then been compiled into a vocabulary of terms for publication via GA's vocabulary service. Within this vocabulary, GA references where sourced terms are published in external vocabularies with a source vocabulary URI (Uniform Resource Identifier). </div><div><br></div><div>All vocabularies, collections of concepts within vocabularies and individual concepts are identified with URI persistent identifiers of the form:</div><div>http://pid.geoscience.gov.au/def/voc/ga/{VOCABULARY-KEY}/{COLLECTION-OR-CONCEPT-NAME}</div>

  • This OGC conformant web service delivers data from Geoscience Australia's Boreholes database (borehole header and directional survey data) and associated geological observations (lithostratigraphic data). The data includes records of boreholes drilled by Geoscience Australia and its predecessor organisations (BMR, AGSO), all boreholes drilled in Australian Commonwealth offshore marine jurisdictions, and a selection of onshore boreholes drilled by government and private entities. Where possible this service conforms to the GeoSciML v4.1 data transfer standard. Geoscience Australia is not a reporting or regulatory authority for borehole drilling. Borehole information in Geoscience Australia's Boreholes database is sourced from various regulatory authorities in the States, Northern Territory and Commonwealth governments for Geoscience Australia research purposes. Where Geoscience Australia is not the custodian of borehole data provided in this web service, the custodian agency provided with the data should be consulted as the authoritative source. The data dictionary for this web service is at <a href="https://d28rz98at9flks.cloudfront.net/144577/144577_00_3.pdf">https://d28rz98at9flks.cloudfront.net/144577/144577_00_3.pdf</a>. For information on borehole status definitions, refer to <a href="https://db-content.ga.gov.au/data_dictionary/Borehole_Status_vocabulary_2021.pdf">https://db-content.ga.gov.au/data_dictionary/Borehole_Status_vocabulary_2021.pdf</a>

  • This web service provides links to access pictures and documents for any geological or geophysical feature data that are delivered by complementary feature services for these data, including but not limited to: boreholes, field sites, structures, stratigraphic units, samples, mines, mineral deposits and mineral occurrences, along with descriptions of those objects.

  • We have used Audio-frequency Magnetotelluric (AMT) data to characterise cover and to estimate depth to basement for a number of regional drilling programs in geologically different regions across Australia. We applied deterministic and probabilistic inversion methods to derive 2D and 1D resistivity models. We have also used borehole results to ground-truth and validate the resistivity models and to improve geophysical interpretations. In the East Tennant region, borehole lithology and wireline logging demonstrates that the modelled AMT response is due to bulk conductivity/resistivity of the cover and basement rocks. The groundwater in the region is suitable for cattle drinking water, thus is of low overall salinity and is regarded as having little effect on bulk conductivity. Therefore the bulk conductivity/resistivity is due primarily to bulk mineralogy and the success of using the AMT models to predict cover thickness is shown to be dependent on whether the bulk mineralogy of cover and basement rocks are sufficiently different to provide a detectable conductivity contrast, and the sensitivity of the AMT response with increasing depth. In areas where there is sufficient difference in bulk mineralogy and where the stratigraphy is simple, AMT models predict the cover thickness with great certainty, particularly closer to the Earth’s surface. However, the geological system is not always simple, and we have provided examples where the AMT models provide an ambiguous response that needs to be interpreted with other data (e.g. drilling, wireline logging, potential field modelling) to validate the AMT model result. Overall, we conclude that the application of the method has been validated and the results can compare favourably with borehole stratigraphy logs once geological (i.e. bulk mineralogical) complexity is understood. This demonstrates that the method is capable of identifying major stratigraphic structures with resistivity contrasts. Our results have assisted with the planning of regional drilling programs and have helped to reduce the uncertainty and risk associated with intersecting targeted stratigraphic units in covered terrains. <b>Citation:</b> Jiang, W., Roach, I. C., Doublier, M. P., Duan, J., Schofield, A., Clark, A., & Brodie, R. C. Application of audio-frequency magnetotelluric data to cover characterisation – validation against borehole petrophysics in the East Tennant region, Northern Australia. <i>Exploration Geophysics</i>, 1-20, DOI: 10.1080/08123985.2023.2246492