From 1 - 10 / 21
  • <p>Digital Earth Australia manages a cloud based service that makes use of open source software and open standards to deliver satellite imagery to its clients. <p>In conjunction with Frontier SI and Commonwealth Scientific and Industrial Research Organisation, Geoscience Australia’s Digital Earth Australia project has developed a cloud architecture that utilizes the Open Data Cube (ODC) to deliver Earth Observation (EO) data through Open Geospatial Consortium (OGC) API standards, interactive Jupyter notebooks and direct file access.​ <p>This infrastructure enables EO data to be used to make decisions by industry and government partners, and reduces the time required to deliver new EO data products. ​ <p>To store the data, DEA utilises Amazon Web Services (AWS) Object store: Simple Storage Service (S3) to hold an archive of Cloud Optimised GeoTIFFs (COGs). ​ <p>This data is indexed by Open Data Cube (ODC) an open source python library. DEA deploy processing, visualisation and analysis applications that make use of the indexed data. This method reduces the duplication of code and effort and creates an extensible framework for delivering data.

  • The purpose of this document is to define an Emergency Management (EM) Metadata Profile Extension to the ISO 19115-1:2014/AMD 1:2018 to identify the metadata required to accurately describe EM resources. The EM Metadata Profile is designed to support the documentation and discovery of EM datasets, services, and other resources. This version of the Profile was developed to reflect extensions made to the current version of the international metadata standard: ISO 19115-1:2014/AMD 1:2018.

  • The Flying Hellfish provide Geoscience Australia with web portals of an unprecedented quality and impact. They have achieved this by embracing automation, digital culture and cloud to uplift Geoscience Australia's web portal presence to scale and meet the demands of the modern user. In 2014 these concepts were only ideas and experiments. However, since the team formed in 2016 they have been on a transformational journey towards a new way of working which has delivered radically better digital products than what was available at the outset. User experience is now at the forefront of our web portals, with the common look and feel providing a seamless experience across more than 15 digital products on any device (including smartphones). The security has been proven to be state-of-the-art, and the products are designed to be fast and responsive. In this presentation you will learn how the team utilises NoOps (the No Operations paradigm) to build, operate and support these products while continuing to quickly and efficiently deliver new and innovative digital products.

  • A publicly available AGOL Dashboard that periodically updates to show the status of requests made to the Australian Exposure Information Platform (AEIP), categorised as Running, Queued and Completed (www.aeip.ga.gov.au)

  • <p>Iron oxide-copper-gold (IOCG) mineral systems are a desirable undercover exploration target due to their large alteration footprint and potentially high metal content. To assist in understanding the potential for IOCG mineral systems beneath cover in the Tennant Creek to Mount Isa region as part of Exploring for the Future, a predictive mineral potential assessment has been undertaken using a knowledge-based, mineral systems approach.<p>This mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential, all of which is well documented in the accompanying IOCG Assessment Criteria Table.<p>Two assessments have been undertaken. The first is a comprehensive assessment containing all available geospatial information and is highly reliant on the level of geological knowledge. As such, it preferentially highlights mineral potential in well-understood areas, such as outcropping regions and performs less well in covered areas, where there is a greater likelihood of data gaps. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment.<p>Both assessment highlight new areas of interest in underexplored regions, of particular interest a SW-NE corridor to the East of Tennant Creek of moderate/high potential in the Barkly region. This corridor extends to an area of moderate potential in the Murphy Inlier region near the Gulf of Carpentaria on the NT/QLD border.

  • <div>Global steel demand is forecast to grow in the coming decades with continued development across Asia and Africa. Over the same period, the International Energy Agency suggests that the carbon intensity of steel production will need to decrease rapidly to align with projected pathways to net zero emissions by 2050. Balancing these competing priorities is a challenge that could shift global steelmaking business models. With abundant resources of both iron ore and metallurgical coal, Australia has benefited significantly from traditional steelmaking value chains. In the face of potential disruption, how should Australia navigate the challenges and opportunities accompanying the transition to ’green’ steel? How can geoscience help to identify and leverage Australia’s specific advantages?&nbsp;</div><div><br></div><div>The Green Steel Economic Fairways Mapper is a free, online tool that models the costs of hydrogen-based green ironmaking and steelmaking and maps how these costs vary across Australia. Developed through collaboration between Geoscience Australia and Monash University, it represents a novel approach to model multiple interconnected resource facilities. Following the Economic Fairways approach, the Mapper combines large-scale infrastructure and geoscience datasets to provide a high-level, geospatial analysis of the economic viability of hypothetical green steel projects. In doing so it creates a new capability within Australia—filling the void before the detail and expense of feasibility studies—to understand the broad contours of the decarbonization challenge, and to inform early-stage decision making in the pursuit of low-carbon steel. In this seminar, we introduce the Green Steel Economic Fairways Mapper, demonstrate its capabilities, and discuss some of the insights it reveals.&nbsp;</div>

  • All commercially produced hydrogen worldwide is presently stored in salt caverns. In eastern Australia, the only known thick salt accumulations are found in the Boree Salt of the Adavale Basin in central Queensland. Although the number of wells penetrating the basin is limited, salt intervals up to 555 m thick have been encountered. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. Using well data and historical 2D seismic interpretations, we have developed a 3D model of the Adavale Basin, particularly focussing on the thicker sections of the Boree Salt. Most of the salt appears to be present at depths greater than 2000 m, but shallower sections are found in the main salt body adjacent to the Warrego Fault and to the south at the Dartmouth Dome. The preliminary 3D model developed for this study has identified three main salt bodies that may be suitable for salt cavern construction and hydrogen storage. These are the only known large salt bodies in eastern Australia and therefore represent potentially strategic assets for underground hydrogen storage. There are still many unknowns, with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Recommendations for future work are provided. <b>Citation:</b> Paterson R., Feitz A. J., Wang L., Rees S. & Keetley J., 2022. From A preliminary 3D model of the Boree Salt in the Adavale Basin, Queensland. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146935

  • Final report on the backgrounds, collaboration structure, methods, and findings from the EIRAPSI project

  • Linked Data refers to a collection of interrelated datasets on the Web expressed in a standard structure. These Linked Data and relationships among them can be reached and managed by Semantic Web tools. Linked Data enables large scale integration of and reasoning on data on the Web. This cookbook is to documents the processes and workflows required to create a Linked Data API for a dataset in the Foundation Base Project in Geoscience Australia (GA) and further publish it on the AWS.

  • Since 2012, Geoscience Australia (GA) has been providing spatial support and advice to the National Situation Room (NSR) (formally the Crisis Coordination Centre (CCC)) within Emergency Management Australia (EMA) as part of GA’s collaboration with the Attorney-General’s Department. A key information requirement identified by EMA was the need to quickly understand what is in an event area. To address this requirement Geoscience Australia designed the Exposure Report which greatly simplifies the interpretation of exposure information for timely emergency response and recovery decision-making. The Exposure Report is generated by extracting the relevant attributes from the Geoscience Australia National Exposure information System (NEXIS) such as demographics, building, business, agriculture, institutions and infrastructure in an event footprint, geographical boundary or potentially threatened area. This automated process quickly presents the required information in a clear and easily accessible report detailing estimates of what exists in the event area. By improving the timeliness and accuracy of information used by the NSR, Geoscience Australia is enhancing the government’s ability to respond to disaster and activate appropriate financial assistance for recovery.