tectonic history
Type of resources
Keywords
Publication year
Topics
-
Abstract: Compressional deformation is a common phase in the post-rift evolution of passive margins and rift systems. The central-west Western Australian margin, between Geraldton and Karratha, provides an excellent example of a strain gradient between inverting passive margin crust and adjacent continental crust. The distribution of contemporary seismicity in the region indicates a concentration of strain release within the Phanerozoic basins which diminishes eastward into the cratons. While few data exist to quantify uplift or slip rates, this gradient can be qualitatively demonstrated by tectonic landforms which indicate that the last century or so of seismicity is representative of patterns of Neogene and younger deformation. Pleistocene marine terraces on the western side of Cape Range indicate uplift rates of several tens of metres per million years, with similar deformation resulting in sub-aerial emergence of Miocene strata on Barrow Island and elsewhere. Northeast of Kalbarri near the eastern margin of the southern Carnarvon Basin, marine strandlines are displaced by a few tens of metres. A possible Pliocene age would indicate that uplift rates are an order of magnitude lower than further west. Relief production rates in the western Yilgarn Craton are lower still - numerous scarps (e.g. Mount Narryer) appear to relate individually to <10 m of displacement across Neogene strata. Quantitative analysis of time-averaged deformation preserved in the aforementioned landforms, including study of scarp length as a proxy for earthquake magnitude, has the potential to provide useful constraints on seismic hazard assessments in a region containing major population centres and nationally significant infrastructure.
-
Preserved within the Glenelg River Complex of SE Australia is a sequence of metamorphosed late Neoproterozoic-early Cambrian deep marine sediments intruded by mafic rocks ranging in composition from continental tholeiites to mid-ocean ridge basalts. This sequence originated during breakup of the Rodinia supercontinent and is locally host to lenses of variably sheared and serpentinised mantle-derived peridotite (Hummocks Serpentinite) representing the deepest exposed structural levels within the metamorphic complex. Direct tectonic emplacement of these rocks from mantle depths is considered unlikely and the ultramafites are interpreted here as fragments of sub-continental lithosphere originally exhumed at the seafloor during continental breakup through processes analogous to those that produced the hyper-extended continental margins of the North Atlantic. Subsequent to burial beneath marine sediments, the exhumed ultramafic rocks and their newly acquired sedimentary cover were deformed and tectonically dismembered during arc-continent collision accompanying the early Paleozoic Delamerian Orogeny, and transported to higher structural levels in the hangingwalls of west-directed thrust faults. Thrust-hosted metasedimentary rocks yield detrital zircon populations that constrain the age of mantle exhumation and attendant continental breakup to be no later than late Neoproterozoic-earliest Cambrian. A second extensional event commencing ca. 490 Ma overprints the Delamerian-age structures; it was accompanied by granite magmatism and low pressure-high temperature metamorphism but outside the zone of magmatic intrusion failed to erase the original, albeit modified, rift geometry. This geometry originally extended southward into formerly contiguous parts of the Ross Orogen in Antarctica where mafic-ultramafic rocks are similarly hosted by a deformed continental margin sequence.
-
Introduction: As part of the Offshore Energy Security Program (2007-2011), Geoscience Australia (GA) undertook an integrated regional study of the deepwater Otway and Sorell basins to improve the understanding of the geology and petroleum prospectivity of the region. The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediment. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. Structural framework: Using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data were used to develop new interpretations of basement structure and basin architecture. This analysis has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, controlled the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. ...
-
Australian Governments over the past decade have acquired thousands of kilometres of high-quality deep-seismic reflection data. The deep-seismic reflection method is unique among imaging techniques in giving textural information as well as a cross sectional view of the overall crust, including the character of the middle crust, lower crust, Moho, and any upper mantle features. Seismic reflection data can be readily integrated with other geophysical and geological data to provide an unsurpassed understanding of a region's geological history as well as the mineral and energy resource potential. Continental Australia is made up of four main elements (blocks), separated by orogens. Most boundaries between the elements are deeply rooted in the lithosphere, and formed during amalgamation of Australia. Major boundaries within the elements attest to their individual amalgamation, mostly prior to the final construction of the continent. Many of Australia's mineral and energy resources are linked to these deep boundaries, with modern seismic reflection providing excellent images of the boundaries. All of the seismic surveys have provided new geological insights. These insights have significantly advanced the understanding of Australian tectonics. Examples include: preservation of extensional architecture in an otherwise highly shortened terrane (Arunta, Yilgarn, Mt Isa and Tanami), unknown deep structures associated with giant mineral deposits (Olympic Dam, Yilgarn, Gawler-Curnamona), as well as the discovery of unknown basins, sutures and possible subduction zones (Arunta, North Queensland, Gawler-Curnamona). These new insights provide not only an improved tectonic understanding, but also new concepts and target areas for mineral and energy resources.
-
A deep seismic reflection and magnetotelluric survey, conducted in 2007, established the architecture and geodynamic framework of north Queensland, Australia. Results based on the interpretation of the deep seismic data include the discovery of a major, west-dipping, Paleoproterozoic (or older) crustal boundary, interpreted the Gidyea Suture Zone, separating relatively nonreflective, thick crust of the Mount Isa Province from thinner, two layered crust to the east. East of the Mount Isa Province, the lower crust is highly reflective and is subdivided into three mappable seismic provinces (Numil, Abingdon and Agwamin) which are not exposed at the surface. To the west of Croydon, a second major crustal boundary also dips west or southwest, offsetting the Moho and extending below it. It is interpreted as the Rowe Fossil Subduction Zone. This marks the boundary between the Numil and Abingdon seismic provinces, and is overlain by the Etheridge Province. The previously unknown Millungera Basin was imaged below the Eromanga-Carpentaria basin system. In the east, the Greenvale and Charters Towers Provinces, part of the Thomson Orogen, have been mapped on the surface as two discrete provinces, but the seismic interpretation raises the possibility that these two provinces are continuous in the subsurface, and also extend northwards to beneath the Hodgkinson Province, originally forming part of an extensive Neoproterozoic-Cambrian passive margin. Continuation of this passive margin at depth beneath the Hodgkinson and Broken River Provinces suggests that these provinces (which formed in an oceanic environment, possibly as an accretionary wedge at a convergent margin) have been thrust westwards onto the older continental passive margin. The Tasman Line, originally defined to represent the eastern limit of Precambrian rocks in Australia, has a complicated geometry in three dimensions, which is related to regional deformational events during the Paleozoic.
-
The magma-poor southern Australian rifted margin formed as a result of a long history of lithospheric extension that commenced in the Middle Jurassic. Breakup with Antarctica was diachronous, commencing in the west at ~83 Ma and concluding in the east at ~34 Ma. Initial NW-SE ultra-slow to slow seafloor spreading (83-45 Ma), followed by N-S fast spreading (45 Ma-present), resulted in a broad threefold segmentation of the margin: a long E-W oriented divergent margin segment (Bight-western Otway basins); a NW-SE trending transitional segment (central Otway-Sorell basins); and a N-S oriented transform margin (southern Sorell-South Tasman Rise). Segmentation appears to have been strongly controlled by the pre-existing basement structure. The divergent and western transitional margin segments are characterised by a broad region of lithospheric thinning and thick extensional basin development. In this region, a well-developed ocean-continent transition zone includes basement highs interpreted as exhumed sub-continental lithospheric mantle. Mapping of stratigraphic sequences provides insights into the processes that took place at the evolving margin, including the timing of mantle exhumation, and the diachronous nature of crustal thinning and breakup. The orientation and segmentation of the western and transitional margin segments suggests that initial spreading is likely to have been accommodated by short, extension-parallel transform segments. In the easternmost part of transitional zone, lithospheric thinning is not as marked and the continent-ocean boundary is interpreted to comprise both rift and long transform elements. Here, roughly N-S oriented extension resulted in the development of strongly transtensional basins.
-
Granulite-facies paragneisses enriched in boron and phosphorus are exposed over a ca. 15 x 5 km area in the Larsemann Hills, East Antarctica. The most widespread are biotite gneisses containing centimeter-sized prismatine crystals, but tourmaline metaquartzite and borosilicate gneisses are richest in B (680-20 000 ppm). Chondrite-normalized REE patterns give two groups: (1) LaN>150, Eu*/Eu < 0.4, which comprises most apatite-bearing metaquartzite and metapelite, tourmaline metaquartzite, and Fe-rich rocks (0.9-2.3 wt% P2O5), and (2) LaN<150, Eu*/Eu > 0.4, which comprises most borosilicate and sodic leucogneisses (2.5-7.4 wt% Na2O). The B- and P-bearing rocks can be interpreted to be clastic sediments altered prior to metamorphism by hydrothermal fluids that remobilized B. We suggest that these rocks were deposited in a back-arc basin located inboard of a Rayner aged (ca. 1000 Ma) continental arc that was active along the leading edge the Indo-Antarctic craton. This margin and its associated back-arc basin developed long before collision with the Australo-Antarctic craton (ca. 530 Ma) merged these rocks into Gondwana and sutured them into their present position in Antarctica. The Larsemann Hills rocks are the third occurrence of such a suite of borosilicate or phosphate bearing rocks in Antarctica and Australia: similar rocks include prismatine-bearing granulites in the Windmill Islands, Wilkes Land, and tourmaline-quartz rocks, sodic gneisses and apatitic iron formation in the Willyama Supergroup, Broken Hill, Australia. These rocks were deposited in analogous tectonic environments, albeit during different supercontinent cycles.
-
The Mulgathing Complex within the Gawler Craton, South Australia, preserves evidence for magmatism, sedimentation and metamorphism spanning the transition between the Neoarchean and Paleoproterozoic (c. 2555 - 2410 Ma). Prior to this study, limited data has been available to constrain the timing of these tectonothermal events. Consequently there has been uncertainty regarding the timing of sedimentation and magmatism relative to the pervasive deformation and metamorphism that has affected this region. We report SHRIMP zircon U-Pb dating of metamorphosed sedimentary and magmatic rocks from the Mulgathing Complex, central Gawler Craton. The data show that etasedimentary gneisses (Christie Gneiss) preserve an inferred maximum depositional age of ca. 2480 Ma, in contrast to previous studies that have suggests deposition had occurred ca. 2510 Ma. The oldest metamorphic zircons in our data are ca. 2465 Ma, thus indicating there was a time interval of less than 15 Myr between the cessation of sedimentation and the occurrence of metamorphism at high metamorphic grade. Metamorphic zircons have a range of ages, from ca. 2465 and ca. 2415 Ma, consistent with a period of ca. 50 Myr during which high-grade metamorphism occurred. Mafic and felsic intrusions have ages that range from ca. 2520 Ma to 2460 Ma, indicating magmatism occurred during sedimentation and continued during the early stages of metamorphism and deformation of these rocks. The abundance of mafic intrusions and its temporal overlap with the sedimentation within the Mulgathing Complex may indicate that the overall tectonic regime involved some form of iithospheric extension. The Mulgathing Complex shows temporal similarities with only a few terranes in particular the Saask Craton, Canada, regions within the North China Craton, and to some extent cratonic regions within northern Australia.
-
Palaeogeographic reconstructions of the Australian and Antarctic margins based on matching basement structures are commonly difficult to reconcile with those derived from ocean floor magnetic anomalies and plate vectors. Following identification of a previously unmapped crustal-scale structure in the southern part of the Delamerian Orogen (Coorong Shear Zone), a revised plate reconstruction for these margins is proposed. This reconstruction positions the Coorong Shear Zone opposite the Mertz Shear Zone and indicates that structural inheritance had a profound influence on the location and geometry of continental breakup, and ocean fracture development. Previously, the Mertz Shear Zone has been correlated with the Proterozoic Kalinjala Mylonite Zone in the Gawler craton but this means that Australia is positioned 300-400 km too far east relative to Antarctica prior to breakup. Differences in the orientation of late Jurassic-Cretaceous basin-bounding normal faults in the Bight and Otway basins further suggest that extensional strain during basin formation was partitioned across the Coorong Shear Zone following an earlier episode of strike-slip faulting on a northwest-striking continental transform fault (Trans-Antarctic Shear).
-
Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, 8-9 March 2012, Geoscience Australia, Canberra.