oceans
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Bathymetric flythrough of the Southeast Margin of Australia for a Powerpoint presentation on the Marine Geoscience capabilities of the RV Investigator. The presentation will be given at the Welcome to Port Ceremony for the ship.
-
Submarine canyons are recognised as having an influence on oceanographic processes, sediment transport, productivity and benthic biodiversity from the shelf to the slope. However, not all canyons are the same and the relative importance of an individual canyon will, in part, be determined by its form, shape and position on the continental margin. Here we present an analysis of these parameters using an updated national dataset of 713 submarine canyons for the margin of mainland Australia. Attribute data for each canyon is used to classify them into canyon types across a hierarchy of canyon physical characteristics for shelf-incised and slope-confined (blind) canyons. At each level on the hierarchy, large groupings of canyons are identified that represent common sets of characteristics. The spatial distribution of canyons on the Australian margin is not regular, with clusters located in the east, southeast, west and southwest. The northern margin has the lowest concentration of canyons. We also assess the potential productivity associated with the various canyon types using chlorophyll-a data derived from satellite (MODIS) images. Shelf-incised canyons are associated with significantly higher and more temporally variable chlorophyll-a concentrations, consistent with their function as conduits for upwelling. Australian submarine canyons are well represented in the national network of marine protected areas, with 36 percent of the mapped canyon population intersecting (whole or in part) a Commonwealth Marine Reserve. This information is relevant to setting priorities for the management of these reserves. Results from this study provide a framework for further analysis of the relative importance of canyons on the Australian margin.
-
Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government¿s Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government¿s research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises total oxygen uptake and total carbon fluxes from core incubation experiments. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia ¿ post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science & Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 128 sample data set comprises major, minor and trace elements derived from x-ray fluorescence analysis of surface seabed sediments (~0-2 cm). Sediment surface area data are also presented. More Information: Radke, L.C., Huang, Z., Przeslawski, R., Webster, I.T., McArthur, M.A., Anderson, T.J., P.J. Siwabessy, Brooke, B. 2011. Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62 (12): 1432 - 1448. Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J. and Brooke, B. 2012. Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science DOI:10.1080/13658816.2012.658808.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science & Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 42 sample data set comprises the mineraology of surface seabed sediment (~0-2 cm) in Jervis Bay. More information: Radke, L.C., Huang, Z., Przeslawski, R., Webster, I.T., McArthur, M.A., Anderson, T.J., P.J. Siwabessy, Brooke, B. 2011. Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62 (12): 1432 - 1448. Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J. and Brooke, B. 2012. Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science DOI:10.1080/13658816.2012.658808.
-
This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises inorganic element data from the fine fraction (Mud: <63um) of the upper ~2cm of seabed sediment. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38 (Nichol et al. 2013).
-
Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to chlorophyll a, b, c and phaeophytin a conentrations in the upper 2 cm of seabed sediments.
-
Population connectivity science involves investigating how populations are related to one another through biological dispersal. Here, we review tools, techniques and analyses used by connectivity researchers, and place them in the context of how they can be used by marine managers and policy-makers to enhance their decision-making capabilities. Specific examples of developing technologies include: advances in mark and recapture techniques, underwater imaging systems, population genetic analyses, as well as four-dimensional dispersal simulations (3D space x time). These data can then be analysed using a wide array of analyses, including matrix analysis, graph theory, and various GIS-based routines. The results can be used to identify key source and sink areas, critical linkages (keystones), natural clusters and groups, levels of accuracy, precision and variability, as well as areas of asymmetric exchange. In turn, this information can be used to help identify natural management units, to target critical conservation areas, to develop efficient sampling strategies through power analysis, and to negotiate equitable allocation of resources to upstream management in cases where downstream benefits are significant. Through a better understanding of how connectivity science can assist decision-making, we hope to encourage increased uptake of these kinds of information into institutional planning processes.
-
Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.