2017
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Topics
-
This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.
-
This forum showcased the range of pre-competitive geoscience projects currently underway by Geoscience Australia and its collaborative partners under the UNCOVER themes with an emphasis on new projects arising out of the Australian Government’s four year $100M Exploring for the Future program which commenced in late 2016. The themes covered are: Cover and what lies beneath, character and thickness; 3D architecture, mapping the framework for mineral systems; 4D geodynamics and mineral systems of Australia; and, Mineral system footprints and toolkits for explorers
-
Exploring for the Future (EFTF) is a four-year geoscience data and information collection programme that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. This factsheet explains one of the activities being undertaken to collect this data and information.
-
Exploring for the Future (EFTF) is a four-year geoscience data and information collection programme that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. This factsheet explains one of the activities being undertaken to collect this data and information.
-
The Minister for Resources and Northern Australia, Senator the Hon Matthew Canavan, formally released the 2016 offshore areas for petroleum exploration on insert date here. The 28 areas are located on the North West Shelf in the Bonaparte, Browse, Roebuck, offshore Canning and Northern Carnarvon basins (Figure 1). Competitive work-program bidding for exploration permits will apply, except for three selected areas which are released under the cash-bidding scheme. These are located in the inboard part of the Northern Carnarvon Basin, where existing hydrocarbon discoveries are currently in production and where complete coverage of 3D-seismic data exists.
-
Large tsunami occur infrequently but can be extremely destructive to human life and the built environment. Management of these risks requires an understanding of the possible sizes of future tsunami, and the probability that they will occur over some time interval of interest. Herein we present a globally extensive probabilistic assessment of tsunami runup hazards, considering only earthquake sources as these have been responsible for about 80% of destructive tsunami globally. The global scale of the analysis prevents us from exploiting detailed site specific data (e.g. high-resolution elevation data, tsunami observations), and because of this we do not suggest the analysis is appropriate for local decision making. However, consistent global analyses are useful to inform international disaster risk reduction initiatives, and can also serve as a reference and potential source of boundary conditions for regional and local tsunami hazard assessments. A global synthetic catalogue of 17000 tsunamigenic earthquake events is developed with magnitudes ranging from 7.5 to 9.6. The geometry of the earthquake sources accounts for the detailed three-dimensional shape of subduction interfaces, when the latter is well constrained. The rate of earthquake events is modelled such that on each earthquake source zone, the earthquakes follow a Gutenberg-Richter magnitude-frequency distribution, and the time-integrated earthquake slip balances the seismic moment release rate inferred from the convergence of neighbouring tectonic plates. Tsunami propagation from each earthquake is modelled globally, and runup height is estimated roughly by combining the global model with heuristic treatments of nearshore tsunami amplification. We evaluate the accuracy of this approach by comparing runup observations from four globally significant historical tsunami with model scenarios having the same earthquake magnitude and location (i.e. without event-specific calibration). Around 50% of runup observations are within a factor of two of the model predictions. The dominant source of uncertainty in the modelled runup seems related to limitations in the earthquake source representation, with limitations due to the global runup methodology being a significant but secondary issue. These uncertainties are modelled statistically, and integrated into the hazard computations. In most locations, the modelled tsunami runup exceedance rate is sensitive to assumptions about the maximum possible earthquake magnitude on nearby earthquake source zones, and the fraction of plate convergence accommodated by non-seismic processes. We model the uncertainties of these (typically) poorly constrained processes using a logic-tree. For any site and chosen exceedance rate, this allows the mean runup (integrated over all logic tree branches) to be estimated, and associated runup confidence intervals to be derived. As well as highlighting the uncertainties in tsunami hazard, the analysis suggests relatively high hazard around most of the Pacific Rim, especially on the east coast of Japan and the west coast of South America, and relatively low hazard around most of the Atlantic outside of the Caribbean. Runup hazards on the east and west coast of Australia are relatively poorly constrained, because there are large uncertainties in the maximum magnitude earthquake which could occur on key source zones in the eastern Indian Ocean and western Pacific.
-
The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.
-
The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.
-
Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Mt Isa 2006, Area A (P200640), complete Bouguer grid is a complete Bouguer anomaly grid for the Mt Isa 2006, Area A (P200640). This gravity survey was acquired under the project No. 200640 for the geological survey of QLD. The grid has a cell size of 0.00372 degrees (approximately 400m). The data are given in units of um/s^2, also known as 'gravity units', or gu. A total of 6575 gravity stations were acquired to produce this grid.
-
The product consists of 8,595 line kilometres of time‐domain airborne electromagnetic (AEM) geophysical data acquired over part of the Musgrave Province in South Australia. This product release also includes electrical conductivity depth images derived from the dataset, and the survey operations and processing report. The data were acquired using the airborne High Moment TEMPEST® electromagnetic and magnetic system, which covered a survey area that includes the south western portion of the WOODROFFE 1:250K Map Sheet (Crombie, Carbeena and western half of the Eunyarinna 1:100K Map Sheets); the northwestern portion of the LINDSAY 1:250K Map Sheet (northern half of the Moombunya and Moolalpinna 1:100K map sheets and northwestern quarter of the Willinna 1:100K map sheet). The survey lines where oriented N-S and flown 2km line apart. The survey was funded by the Government of South Australia, as part of the Plan for Accelerating Exploration (PACE) Initiative, through the Department of State Development, (DSD). The survey was managed by Geoscience Australia as part of a national collaborative framework project agreement with SA. The principal objective of this project was to capture a baseline geoscientific dataset to provide further information on the geological context and groundwater resource potential, of the central part of the South Australian Musgrave Province. Geoscience Australia contracted CGG Aviation (Australia) Pty to acquire High Moment TEMPEST® electromagnetic and magnetic data, between August and September 2016. The data were processed and modelled by CGG using its in‐house processing conductivity depth transform techniques. The Musgrave Province in far north of South Australia is one of the last true exploration frontier areas in Australia, which extends into Northern Territory and Western Australia. The Musgrave Province is composed primarily of granulite facies quartzo-feldspathic metasedimentary and meta-igneous rocks, and includes a suite of layered mafic to ultramafic intrusions known as the Giles Complex. This geological setting has proven to be highly prospective for Ni-Cu-PGE mineral systems in the bordering states. A good example of this is the discovery of the Nebo and Babel nickel-copper-PGE sulphide deposits in 2000, followed by a subsequent number of other nickel (Ni), copper (Cu) and gold (Au) discoveries. In South Australia, major discoveries have eluded mineral explorers and exploration activity has fallen behind that of the Northern Territory and Western Australia. This divergence is largely due to issues around land access and a lack of contemporary precompetitive geoscientific information and data. The limited surface mapping combined with extensive regolith cover and incomplete geophysical, geochemical and geochronological data sets make it difficult for new explorers to fully appreciate the full economic potential of the Musgrave Province. The regional AEM survey data will be used to inform the distribution of cover sequences that obscure the basement geology and provide insight into the variation and characteristics of the overlaying sequences. The increased definition in the distribution of cover sequences and their variation and characteristics of the overlaying sequences will allow explorers to better assess exploration opportunities in the area. The new AEM data should also assist in the definition of the groundwater resource potential of the region and help characterise the pre-Pliocene palaeovalley systems known to exist in the region. The selection of the survey area was undertaken through a consultative process involving the CSIRO, Geological Survey of South Australia and the exploration companies currently active in the region (including industry survey partner PepinNini Minerals Ltd). The data will be available from Geoscience Australia’s web site free of charge. It will also be available through the South Australian Government’s SARIG website at https://map.sarig.sa.gov.au. The data will also feed into the precompetitive exploration workflow developed and executed by the GSSA and inform a new suite of value-added products directed at the exploration community.