From 1 - 10 / 414
  • The aim of the NPE10 exercise is the continuation of the multi - technology approach started with NPE09. For NPE10, a simulated release of radionuclides was the trigger for the scenario in which an REB-listed seismo-acoustic event with ML between 3.0 and 4.8 was the source. Assumptions made were: A single seismo-acoustic signal-generating underground detonation event with continuous leak of noble gas, radionuclide detections only from simulated release. Using atmospheric transport modelling the IDC identified 48 candidate seismo-acoustic events from data fusion of the seismo-acoustic REBs with radionuclide detections. We were able to reduce the number of candidate seismo-acoustic point sources from 48 to 2 by firstly rejecting events that did not appear consistently in the data fusion bulletins; secondly, reducing the time-window under consideration through analysis of xenon isotope ratios; and thirdly, by clustering the remaining earthquakes and aftershocks and applying forward tracking to these (clustered) candidate events, using the Hy-split and ARGOS modelling tools. The two candidate events that were not screened by RN analysis were Wyoming REB events 6797924 (23-Oct) and 6797555 (24-Oct). Event 6797555 was identified as an earthquake on the basis of depth (identification of candidate depth phases at five teleseismic stations); regional Pn/Lg and mb:Ms - all indicating an earthquake source. Event 6797924, however, was not screened and from our analysis would constitute a candidate event for an On-Site Inspection under the Treaty.

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • This document presents an assessment of two earthquake scenarios in Melbourne. The two earthquake scenarios are considered the maximum magnitude earthquakes possible on the two fault structures; the Beaumaris Monocline and the Selwyn Fault. The assessments are based on using GA's earthquake risk modelling software, EQRM. The software is an open-source code that is capable of modelling earthquake scenario ground motion and scenario loss. Necessary inputs include the geometry of the fault structures, appropriate ground-motion and site classification models for the area concerned and exposure information describing the built environment. Impact assessment outputs include ground shaking intensity and residential loss estimates. The information from this scenario assessment can be used to inform emergency management planning and preparation in Victoria and support the national understanding of earthquake impact.