From 1 - 10 / 149
  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • To date, a range of methods have been developed and applied to the processing and analysis of underwater video and imagery, in part driven by different requirements. For example, in Australia, the marine science community who are partnered by the National Environmental Research Program (NERP) and funded by the Marine Biodiversity Hub, has developed a national CATAMI (Collaborative and Automated Tools for Analysis of Marine Imagery and video) scheme. Technological advances in recent years have improved the usability and output quality of underwater video and still images used to identify and monitor underwater habitats and structures and as a result, these techniques are more frequently applied to marine studies. So far, a comprehensive review of underwater video and still imagery processing/analysis methods has not been completed, although the number of studies utilising underwater stills and video has increased dramatically. Difficulties in diver limitation and stringent regulations applied to the collection of diver-based imagery and video data from underwater benthic habitats. Therefore, remote sensing methods such as underwater video and still imagery are becoming increasingly pivotal for ground-truthing benthic biological and physical habitats in shallow and deep marine and freshwater habitats and are also providing a permanent archive for future analyses. This review focuses on post-processing observational methods used for underwater video and still image habitat classification and quantification. We summarise the main applications, advantages and disadvantages of video and still imagery scoring methods, and illustrate recent advances in this topic.

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS-3959 (2009). BAL is a measure of the severity of a building's potential exposure to ember attack, radiant heat and direct flame contact in the event of a bushfire. It serves as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. The BAL Maps and Exposure report provide maps of three communities in Western Australia, with indicative BAL levels, and the aggregate inventory of assets and population exposed to the different levels of BAL.

  • CYPLUS - Cape York Peninsula Land Use Strategy

  • The Tropical Cyclone Impact Map provides guidance on areas likely to be impacted by severe winds due to tropical cyclones. The impact zones are generated by Geoscience Australia's Tropical Cyclone Risk Model (TCRM), and are based on the tropical cyclone forecast information published by the Bureau of Meteorology's Tropical Cyclone Warning Centres. TCRM applies a 2-dimensional parametric wind field to the forecast track provided by the Bureau of Meteorology, and translates the wind speeds into an indicator of potential damage to housing. Uncertainty in the forecast track is not included in the product.

  • The Aerial Survey Photography Records consist of more than 11,000 film negatives as well as derivative contract prints and diapositives. These records of the Australian landscape were created by Geoscience Australia and its predecessor agencies such as the Australian Surveying and Land Information Group, the Australian Survey Office and the Division of National Mapping. The records were captured during the period c.1928-1993 and have been used as the basis for the Commonwealth government's topographic map production as well as providing an opportunity to track environmental changes in the landscape over an extensive period of time. Antarctic films are also included in the collection. The entire collection was transferred to National Archives Australia in December 2010.

  • Wildfires are one of the major natural hazards facing the Australian continent. Chen (2004) rated wildfires as the third largest cause of building damage in Australia during the 20th Century. Most of this damage was due to a few extreme wildfire events. For a vast country like Australia with its sparse network of weather observation sites and short temporal length of records, it is important to employ a range of modelling techniques that involve both observed and modelled data in order to produce fire hazard and risk information/products with utility. This presentation details the use of statistical and deterministic modelling of both observations and synthetic climate model output (downscaled gridded reanalysis information) in the development of extreme fire weather potential maps. Fire danger indices such as the McArthur Fire Forest Danger Index (FFDI) are widely used by fire management agencies to assess fire weather conditions and issue public warnings. FFDI is regularly calculated at weather stations using measurements of weather variables and fuel information. As it has been shown that relatively few extreme events cause most of the impacts, the ability to derive the spatial distribution of the return period of extreme FFDI values contributes important information to the understanding of how potential risk is distributed across the continent. The long-term spatial tendency FFDI has been assessed by calculating the return period of its extreme values from point-based observational data. The frequency and intensity as well as the spatial distribution of FFDI extremes were obtained by applying an advanced spatial interpolation algorithm to the recording stations' measurements. As an illustration maps of 50 and 100-year return-period (RP) of FFDI under current climate conditions are presented (based on both observations and reanalysis climate model output). MODSIM 2013 Conference

  • Imagine you are an incident controller viewing a computer screen which depicts the likely spread of a bushfire that's just started. The display shows houses and other structures in the fire's path, and even the demographics of the people living in the area, such as the number of people, their age spread, whether households have independent transport, and whether English is their second language. In addition, imagine that you can quantify and display the uncertainty in both the fire weather and also the type and state of the vegetation, visualising the sensitivity of the expected fire spread and impact to these uncertainties. It will be possible to consider 'what if' scenarios as the event unfolds, and reject those scenarios that are no longer plausible. The advantages of such a simulation system in making speedy, well-informed decisions has been considered by a group of Bushfire CRC researchers who have collaborated to produce a 'proof of concept' for such a system, demonstrated initially on three case studies. The 'proof of concept' system has the working name FireDST (Fire Impact and Risk Evaluation Decision Support Tool). FireDST links various databases and models, including the Phoenix RapidFire fire prediction model and building vulnerability assessment models, as well as infrastructure and demographic databases. The information is assembled into an integrated simulation framework through a geographical information system (GIS) interface. Pre-processed information, such as factors that determine the local and regional wind, and also the typical response of buildings to fire, are linked through a database, along with census-derived social and economic information. This presentation provides an overview of the FireDST simulation 'proof of concept' tool and walks through a sample probabilistic simulation constructed using the tool. Handbook MODSIM2013 Conference

  • Geoscience Australia defines a borehole as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally, and would include Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. For the purpose of a borehole as defined by GeoSciML Borehole 3.0, the dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • These datasets contain legacy data from the decommissioned MapConnect/AMSIS2 application. It contains legacy data for Fisheries, Regulatory, Offshore Minerals and Environment. It is not authoritative and has not been updated since 2006. These datasets contain legacy data found in the Australian Marine Spatial Information System (AMSIS) between 2006 and 2015, with a currency date of 2006. . Users will need to contact the agency responsible for the data to check current validity and spatial precision.