From 1 - 10 / 179
  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • This resource contains a bathymetry compilation prepared by the University of Western Australia for the North West Shelf of Australia, between the Cape Range and the Dampier Peninsula. The compilation includes, by decreasing resolution: - Publicly available MBES datasets, made available by Geoscience Australia by December 2019. - Satellite derived bathymetry produced using 1000+ images acquired between January 2017 and December 2019. - Seismic derived bathymetry extracted from 100+ surveys acquired between 1981 and 2015. - SRTM topography, reprocessed by Galant et al, 2011: https://pid.geoscience.gov.au/dataset/ga/72759 - 2009 Australian Bathymetry and Topography grid: https://pid.geoscience.gov.au/dataset/ga/67703 The Seismic and Satellite derived bathymetry grids are also available as individual layers. The vertical and spatial accuracy of the datasets have been thoroughly assessed using high-resolution datasets including publicly available MBES and LADS surveys. The assessment indicates that the seismic derived bathymetry has a depth accuracy better than 1 m + 2% of the absolute water depths while the satellites derived bathymetry has a depth accuracy better than 1 m + 5% of the absolute water depths. A detailed methodology is provided in: Lebrec et al, 2021. Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys and historical datasets. (in prep.) This dataset is published with the permission of the CEO, Geoscience Australia. AUTHOR’S NOTICE: This dataset should not be used, under any circumstances, for navigation. When used, the dataset should be referenced as follow: Lebrec, U., Paumard, V., O'Leary, M. J., and Lang, S. C.: Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys and historical datasets, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-128, in review, 2021.

  • The Apollo Marine Park bathymetry survey was acquired by Deakin University Marine Mapping lab onboard the M/V Yolla during the period 07 January - 22 May 2021 using a Kongsberg EM2040C multibeam sonar system. The survey was completed as part of a contract with Parks Australia to map the shallow bathymetry in the Marine Park and an Our Marine Parks grant to extend the mapping within the park. The survey was led by Dr. Daniel Ierodiaconou (Deakin University). This dataset contains a 2m-resolution 32-bit floating point GeoTIFF file of the bathymetry in the study area, derived from the processed EM2040C bathymetry data, using CARIS HIPS and SIPS software. This dataset is not to be used for navigational purposes.

  • Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new data. This includes compiling existing bathymetry datasets for select marine parks. This dataset includes a compilation of multibeam sonar bathymetry (gridded to 100 m spatial resolution) for Bremer Marine Park, in the South-west Marine Park Network. The park incorporates Bremer Canyon and adjacent smaller canyons that incise the continental slope and outer shelf. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.<p><p>This dataset is not to be used for navigational purposes.

  • The AusSeabed Marine Data Portal provides openly accessible seabed data to users. This report details the results and recommendations following a community survey on the portals functionality and usability. The report informs future development of the AusSeabed Marine Data Portal to ensure it meets end-user needs.

  • <div>The Kimberley Region and WA Reefs Bathymetry was derived by EOMAP form multispectral satellite data from the European Space Agency’s Sentinel-2 satellite sensor. EOMAP was contracted by Geoscience Australia (GA) to provide high-resolution (10m) Satellite-Derived Bathymetry (SDB) for the Priority Australian Seabed Mapping Sites. The survey area encompasses an area within Kimberley Region in Western Australia which includes Ashmore Reef, Browse Island, Cartier Island, Clerke Reef, Cunningham Island, Mermaid Reef, Scott Reef and Seringapatam Reef. These critical geospatial data layers provide the essential environmental baseline information for the long-term monitoring and management of these Marine Parks. Mapping the shallow water zone is of importance both from an environmental and socioeconomic perspective. Having access to digital, georeferenced, high-resolution maps of bathymetry and benthic habitats of shallow water areas, is of fundamental use in the areas of navigation, ecological research, environmental modelling, management and conservation, and monitoring the impacts from climate change. Bathymetry data was processed using the physics-based inversion method to derive quantitative information of the shallow water bathymetry using the reflected sunlight energy in different wavelengths of the visible and near infrared region. A detailed delivery report is provided in: Delivery Report: Satellite-Derived Bathymetry, Priority Australian Seabed Mapping Sites. Reference: 20220304.0888. EOMAP Australia Pty Ltd. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.</div>

  • The remote Eastern frontiers project aimed to provide a geological and petroleum prospectivity assessement of the Faust Capel Basins. Funded through Australian Governement Initiatives (Energy Security Program). The Faust Capel Basins survey GA-2436/ TAN0713 was acquired by Geoscience Australia onboard the RV Tangaroa (operated by NIWA) from the 6th of October to the 22nd of November 2007. The geographic range stretched from Wellington to the Faust Capel Basins to Lord Howe Island and back to Wellington. Approximately 8,945 sailing km of multibeam bathymetry was acquired. The high resolution bathymetry data imaged seafloor features in unprecedented detail, revealing the effects of recent magmatic activity and fluid migration on the seafloor. It also produced a new image of a flat topped unexplored seamount. A member of the Lord Howe Rise seamount chain.<p><p>This dataset is not to be used for navigational purposes.

  • <p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Bathymetry grids <p>The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. <p>The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. <p> Morphological Surfaces <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.<p><p>This dataset is not to be used for navigational purposes.

  • <div>The Australian Sub-bottom Profiling Guidelines were developed by the AusSeabed community to establish a standardised approach to the acquisition of sub-bottom profiler data in an Australian context. They complement a suite of ocean best practice guidelines developed by the AusSeabed community including the <a href="https://pid.geoscience.gov.au/dataset/ga/121571">Australian Multibeam Guidelines</a> (eCat Record 121571) and the Australian <a href="https://repository.oceanbestpractices.org/handle/11329/2080">Satellite Derived Bathymetry Guidelines</a>.</div><div>The guidelines provide recommended procedures for data acquisition, quality checking and data submission to the AusSeabed marine data portal. They were initially designed for use by the Australian Hydrographic Office Hydroscheme Industry Partnership Program (HIPP) to enable the acquisition of standardised, efficient and effective sub-bottom profile data for general seabed characterisation and collection of baseline data. Additionally, the guidelines may be used by any agency or party collecting seabed geophysical data in Australia’s marine jurisdiction for a range of use cases. </div><div><br></div><div>The guidelines include a broad examination of data acquisition, basic processing for quality checking, metadata description, and guidance for data submission to AusSeabed. They do not include prescriptive equipment-specific hardware and software specifications, detailed user-defined settings or instrument preparation activities such as bench/workshop tests, personnel requirements, or provide survey costing information.</div><div><br></div>

  • Geoscience Australia conducted a marine seismic survey (GA-0349) over poorly defined areas of the Houtman sub-basin (part of the Perth basin) between 15th of November to the 23rd of January 2015. The aim was to acquire high quality, industry-standard precompetitive 2D seismic data, Multi-beam echo-sounder (MBES) off the coast of Western Australia. The new seismic data will supplement existing geological knowledge of the region, underpin petroleum prospectivity evaluation and support the discovery of new oil gas resources.<p><p>This dataset is not to be used for navigational purposes.