From 1 - 10 / 139
  • This report presents a summary of the groundwater and surface water hydrochemistry data release from the Howard East project conducted as part of Exploring for the Future (EFTF) —an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater and surface water sample collection methods and hydrochemistry and isotope data from monitoring bores in the Howard East project area, Northern Territory (NT). The Howard East project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing bores in the Howard East area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report and all hydrochemistry data are available for download from the link at right.

  • This report provides an initial summary of the hydrogeochemistry of the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) of the Upper Burdekin Region of North Queensland, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. Groundwater hydrogeochemistry studies can improve system understanding by reflecting host formation compositions and groundwater processes. These studies also provide regional baseline groundwater datasets that can inform environmental monitoring, resource use and decision making. During 2017 and 2018 Geoscience Australia collected 38 groundwater samples and 80 surface water samples (including quality control samples) to evaluate groundwater system processes including potential flow paths, recharge and groundwater-surface water-interactions. These surveys were conducted across three months of fieldwork, sampling water for a comprehensive suite of hydrogeochemical parameters. The present report includes surface water and groundwater data and information on: 1) sampling sites; 2) field physicochemical parameters (EC, pH, Eh, DO and T); 3) field measurements of total alkalinity (HCO3-); 4) laboratory results of major anion and cation results; 5) laboratory results for isotopes of water (δ18O and δD), DIC (δ13C), and dissolved strontium (87Sr/86Sr); and 6) hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs, SF6 and radiogenic isotopes δ14C and δ36Cl. Analysis that were largely below detection limit include: trace element concentrations, dissolved sulfide (S2-), ferrous iron (Fe2+), and dissolved sulfate (affecting sampling of δ34S and δ18O). This study demonstrates that hydrogeochemistry surveys, with full suites of chemical parameters including isotopes, can reveal fundamental groundwater system processes such as groundwater flow paths, groundwater recharge and groundwater-surface water interactions. The chemical ‘fingerprints’ identified here indicate groundwater flow paths are largely restricted to within the MBP and NBP aquifers, which have little interaction with adjacent and underlying non-basaltic rocks. The results also indicate groundwater is largely recharged from rainfall in higher elevations of the basalt provinces, with variable rainfall inputs to groundwater from lower elevation and rivers along flow paths. Groundwater-surface water interactions show several chemical signatures linking groundwater to springs, tributary rivers and the Burdekin River. Results from the Upper Burdekin Hydrogeochemistry Survey for the MBP and NBP have been plotted and mapped with initial interpretations presented below. Further detailed interpretation of this hydrogeochemistry data will be the focus of future publications. This data release is part in a series of staged outputs from the EFTF program. Relevant data, information and images are available through the Geoscience Australia website.

  • This report presents key results from hydrogeological investigations at Alice Springs, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Southern Stuart Corridor (SSC) project area within the Northern Territory extends in a north–south corridor from Tennant Creek to Alice Springs, encompassing four water control districts and a number of remote communities. Water allocation planning and agricultural expansion in the SSC is currently limited by a paucity of data and information regarding the volume and extent of groundwater resources and groundwater systems more generally. This includes recharge rates, surface water –groundwater connectivity, and the dependency of ecosystems on groundwater. Outside the proposed agricultural areas, the project includes numerous remote communities where there is a need to secure water supplies. Geoscience Australia, in partnership with the Northern Territory Department of Environment and Natural Resources and the Power and Water Corporation, undertook an extensive program of hydrogeological investigations between 2017 and 2019. Data acquisition included helicopter airborne electromagnetic (AEM) and magnetic data, investigative groundwater bore drilling, ground-based and downhole geophysical data (including nuclear magnetic resonance for mapping water content and induction conductivity/gamma for defining geological formations), and hydrochemistry for characterising groundwater systems. This report investigates the hydrogeology across the Alice Springs focus area, which includes the Roe Creek and proposed Rocky Hill borefields, where five hydrostratigraphic units were mapped based on AEM interpretation and borehole geophysical information. The mapping supports the presence of a syncline, with a gentle parabolic fold axis that plunges westward, and demonstrates that the main Siluro-Devonian Mereenie Sandstone and Ordovician Pacoota Sandstone aquifers are continuous from Roe Creek borefield to the Rocky Hill area. Areas with the highest potential for recharge to the Paleozoic strata are where Roe Creek or the Todd River directly overlie shallow subcrop of the aquifer units. Three potential recharge areas are identified: (1) Roe Creek borefield, (2) a 3 km stretch of Roe Creek immediately west of the proposed Rocky Hill borefield, and (3) the viticulture block to the east of Rocky Hill. Analysis of groundwater chemistry and regional hydrology suggests that the rainfall threshold for recharge of the Paleozoic aquifers is ~125 mm/month, and groundwater isotope data indicate that recharge occurs rapidly. The groundwaters have similar major ion chemistry, reflecting similar geology and suggesting that all of the Paleozoic aquifers in the focus area are connected to some degree. Groundwater extraction at Roe Creek borefield since the 1960s has led to the development of a cone of depression and a groundwater divide, which has gradually moved eastward and is now east of the proposed Rocky Hill borefield. The majority of the groundwater within the focus area is of good quality, with <1000 mg/L total dissolved salts (TDS). The brackish water (7000 mg/L TDS) further to the east of the proposed Rocky Hill borefield warrants further investigation to determine the potential risk of it being captured by the cone of depression following the development of this borefield. This study provides new insight to the hydrogeological understanding of the Alice Springs focus area. Specifically, this investigation demonstrates that the Roe Creek and proposed Rocky Hill borefields, and a nearby viticulture area are all extracting from the same aquifer system. This finding will inform the future management and security of the Alice Springs community water supply. New groundwater resource estimates and a water level monitoring scheme can be developed to support the management of this vital groundwater resource.

  • The presence of Neogene fault systems can have a significant impact on hydraulic connectivity of aquifers, juxtaposing otherwise disconnected aquifers, enhancing recharge and/or discharge or acting as barriers to flow and consequently compartmentalising groundwater resources. Previously, regional airborne electromagnetics (AEM) transects allied with groundwater investigations have pointed to the potential for localised compartmentalisation of the Daly River Basin groundwater systems. However, existing data is sparse, and equivocal. In this context, the main aim of the Daly River Basin Project is to determine if compartmentalisation of the aquifers is a significant factor and thus should be explicitly considered in groundwater modelling and water allocation planning. The objectives of the project main goals of the project are to: (1) map Neogene faults through the use of airborne electromagnetic (AEM) and morphotectonic mapping, and (2) assess the permeability and transmissivity of mapped fault zones and their role in potential groundwater system compartmentalisation. Data acquisition includes 3325 line-kilometres of new AEM and airborne magnetics, ground (ground magnetic resonance (GMR)), and borehole geophysics, drilling, groundwater sampling and hydrochemical analysis, geomorphic and morphotectonics mapping. Hydrogeophysical, geomorphic and hydrogeological data will also be used to better understand groundwater-surface water connectivity and the potential for managed aquifer recharge schemes to replenish extracted groundwater resources. The outcomes of this project will inform decisions on water allocations and underpin effective and efficient groundwater use. This paper specifically reports on the ability of AEM and morphotectonics mapping to identify Neogene fault systems in the Daly River Basin.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Cooper Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Lake Eyre Basin aquifers in the Cooper Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods to derive these data for the Lake Eyre Basin aquifer in the Cooper Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Lake Eyre Basin overlying the Cooper Basin includes one broadly defined aquifer that includes multiple aquifer systems that are defined as Cenozoic aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 were used for this compilation.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Across Australia, groundwater is a vital resource that supports and strengthens communities, culture, the environment and numerous industries. Movement of groundwater is complicated, taking place horizontally, vertically and across different timescales from weeks to millions of years. It is affected by changes in climate, human use, and geological complexities such as the type, geometry and distribution of rocks. Understanding how all these factors interact is known as a groundwater conceptual model and it is an important first step. This groundwater conceptualisation includes the Galilee Basin and the overlying Eromanga and Lake Eyre basins and other Cenozoic units as well as surface-groundwater interactions. Figure 1 shows the locations of the cross sections used to conceptualise groundwater in the Galilee Basin region. In the Galilee Basin extended region this includes 1 aquifer in the Lake Eyre Basin, 5 aquifers in the Eromanga Basin and 3 aquifers in the Galilee Basin (Wainman et al., 2023a, b). Confidence for each aquifer was calculated for both salinity and water levels (Hostetler et al., 2023a, b, c). The confidence for each aquifer was added to show the overall confidence for the basin. The level of knowledge across all aquifers are moderate to low. The groundwater conceptualisations summarise the groundwater flow and potential connectivity between aquifers. Figures also show the distribution of the aquifers and aquitards, average salinity, potential aquifer yield and confidence over an area of 50 km along the cross section lines.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Lake Eyre Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods to derive these data for the Lake Eyre Basin aquifer in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Lake Eyre Basin overlying the Adavale Basin includes one broadly defined aquifer: Cenozoic hydrostratigraphic unit (Cenozoic aquifer). Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the north Bowen Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of near-surface groundwater resources in north Bowen Basin, including salinity, water levels, resource size and surface water interactions. The methods used to derive these data for the shallow groundwater in the north Bowen Basin are outlined in the associated metadata files. These are described in groundwater conceptual models (Hostetler et al., 2023). Groundwater data for the north Bowen Basin are restricted to the upper 50 m, as a stratigraphic model is not available. Compiled data are assigned to this interval and used to characterise the near-surface groundwater system at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Galilee Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water - groundwater interactions. The methods used to derive these data for all Galilee Basin aquifers in the Galilee Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Hostetler et al., 2023). The Galilee Basin includes 3 broadly defined aquifer intervals: from deepest to shallowest, these are the Joe Joe Group, Betts Creek beds and Clematis aquifers. Compiled data have been assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 were used for this compilation.