From 1 - 10 / 228
  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • This web service provides access to datasets generated by the North Australian Craton (NAC) Iron Oxide Copper Gold (IOCG) Mineral Potential Assessment. Two outputs were created: a comprehensive assessment, using all available spatial data, limiting data where possible to capture mineral systems older than 1500 ma, and; a coverage assessment, which is constrained to data that have no reliance on outcrop or age of mineralisation.

  • This service is for the 'OZTemp Interpreted Temperature at 5km Depth' image of Australia product. It includes an interpretation of the crustal temperature at 5km depth, based on the OZTemp bottom hole temperature database and additional confidential company data.

  • This service includes well geothermal temperature and location, extracted (from the OZTemp database), and used to create the 'OZTemp Interpreted Temperature at 5km Depth' image of Australia.

  • The Stillwell Hills region comprises granulite-facies gneisses which record evidence for multiple episodes of deformation and metamorphism spanning more than 2500 million years. The predominant orthogneiss package (Stillwell Orthogneiss) is thought to represent the margin of an Archaean craton exposed in Enderby Land, some 150 km to the west that was reworked during the late Proterozoic. Younger additions to the crust include Palaeoproterozoic charnockitic gneiss (Scoresby Charnockite) and Meso-Neoproterozoic mafic sills and dykes (Point Noble Gneiss, Kemp Dykes) and felsic pegmatites (Cosgrove Pegmatites). Subordinate supracrustal rocks, including metaquartzite, metapelitic, metapsammitic and calc-silicate gneiss (Dovers Paragneiss, Sperring Paragneiss, Stefansson Paragneiss, Keel Paragneiss, Ives Paragneiss) are intercalated and infolded with the Archaean-Palaeoproterozoic orthogneisses. This map service is derived from the map product 'The Geology of the Stillwell Hills, Antarctica' (GEOCAT 72717). This map service is published with the permission of the CEO, Geoscience Australia.

  • Here we present the web map service of the surficial geology for the Vestfold Hills, East Antarctica. On the coast of Prydz Bay, the region is one of the largest ice-free areas in Antarctica. Surficial geology mapping at 1:2000 was undertaken with field observations in the 2018/19 and 2019/20 summer seasons as well as aerial photography and satellite imagery interpretation. Units are based on the Geological Survey of Canada Surficial Data Model Version 2.4.0 (Deblonde et al 2019).

  • As part of the 2018 National Seismic Hazard Assessment (NSHA), we compiled the geographic information system (GIS) dataset to enable end-users to view and interrogate the NSHA18 outputs on a spatially enabled platform. It is intended to ensure the NSHA18 outputs are openly available, discoverable and accessible to both internal and external users. This geospatial product is derived from the dataset generated through the development of the NSHA18 and contains uniform probability hazard maps for a 10% and 2% chance of exceedance in 50 years. These maps are calculated for peak ground acceleration (PGA) and a range of response spectral periods, Sa(T), for T = 0.1, 0.2, 0.3, 0.5, 1.0, 2.0 and 4.0 s. Additionally, hazard curves for each ground-motion intensity measure as well as uniform hazard spectra at the nominated exceedance probabilities are calculated for key localities.

  • Offshore Minerals Act (OMA 1994) - Mineral Blocks. This service displays the most recent realisation of the Mineral Blocks as defined under the Offshore Minerals Act 1994 (OMA 1994) as realised in GDA94. Block data extends beyond the area of operation of the OMA and includes areas of coastal waters and land within the constitutional limits of the States and Territories.

  • Geoscience Australia and Monash University have produced a series of renewable energy capacity factor maps of Australia. Solar photovoltaic, concentrated solar power, wind (150 m hub height) and hybrid wind and solar capacity factor maps are included in this web service. Solar Photovoltaic capacity factor map The minimum capacity factor is <10% and the maximum is 25%. The map is derived from Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Concentrated Solar Power capacity factor map The minimum capacity factor is 52% and the maximum is 62%. The map is derived from Bureau of Meteorology (2020) data. Minimum exposure cut-off values used are from International Renewable Energy Agency (2012) and Wang (2019). The scientific colour map is sourced from Crameri (2018). Wind (150 m hub height) capacity factor map The minimum capacity factor is <15% and the maximum is 42%. The map is derived from Global Modeling and Assimilation Office (2015) and DNV GL (2016) data. The scientific colour map is sourced from Crameri (2018). Hybrid Wind and Solar capacity factor maps Nine hybrid wind and solar maps are available, divided into 10% intervals of wind to solar ratio (eg. (wind 40% : solar 60%), (wind 50% : solar 50%), (wind 60% : solar 40%) etc.). The maps show the capacity factor available for electrolysis. Wind and solar plants might be oversized to increase the overall running time of the hydrogen plant allowing the investor to reduce electrolyser capital expenditures for the same amount of output. Calculations also include curtailment (or capping) of excess electricity when more electricity is generated than required to operate the electrolyser. The minimum and maximum capacity factors vary relative to a map’s specified wind to solar ratio. A wind to solar ratio of 50:50 produces the highest available capacity factor of 64%. The maps are derived from Global Modeling and Assimilation Office (2015), DNV GL (2016) and Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Disclaimer The capacity factor maps are derived from modelling output and not all locations are validated. Geoscience Australia does not guarantee the accuracy of the maps, data, and visualizations presented, and accepts no responsibility for any consequence of their use. Capacity factor values shown in the maps should not be relied upon in an absolute sense when making a commercial decision. Rather they should be strictly interpreted as indicative. Users are urged to exercise caution when using the information and data contained. If you have found an error in this dataset, please let us know by contacting clientservices@ga.gov.au.

  • This service provides access to hydrochemistry data (groundwater and surface water analyses) obtained from water samples collected from Australian water bores or field sites.