From 1 - 10 / 91
  • The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Petrel Sub-basin using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Five geomorphic units; bank, plain, ridge, terrace and valley, were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises an interpreted geomorphic map.

  • This resource contains surface sediment data for Outer Darwin Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government (Department of Land Resource Management) during the period from 28 May and 23 June 2015 on the RV Solander (survey SOL6187/GA0351). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. These datasets comprise total sediment metabolism, mineral specific surface area and carbonate and element concetrations, and C and N isotopes of seabed sediments. A detailed account of the survey is provided in: Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas, W.A., Potter, A., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2015. Outer Darwin Harbour Marine Survey 2015: GA0351/SOL6187 Post-survey report. Record 2016/008. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2016.008

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA0334) was to look for evidence of fault reactivation and of any past or current gas or fluid seepage at the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This data package brings together the following datasets which describe biophysical aspects of seafloor sediments: GEOCAT#74276. Underwater video footage from the Vlaming Sub-basin (GA0334). GEOCAT#76463. GA0334 Vlaming sub-basin Species identification of worms from grab. GEOCAT#78540. Vlaming Sub-Basin Marine Environmental Survey (GA-0334/S. Supporter GP 1373) (NCIP Program) - High Resolution Bathymetry grids. GEOCAT# 78550. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorin analyses of seabed sediments. GEOCAT#78551. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Inorganic elements of seabed sediments. GEOCAT#78552. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Bulk organic carbon and nitrogen isotopes and concentrations in seabed sediments. GEOCAT#78553. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Sediment oxygen demand of seabed sediments. GEOCAT#78564. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorophyll a, b and c of seabed sediments. GEOCAT#78565. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: %carbonate and specific surface area of seabed sediments. GEOCAT#79176. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Grain size and carbonate concentrations of seabed sediments. GEOCAT#79345. Ecology / Infaunal morphospecies identifications from the Vlaming Sub-basin (GA0334). An account of the field operations is published in: GEOCAT 74626. Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bernardel, G., Jorgensen, D M., Siwabessy, J., Carroll, A. and Whiteway, T., 2012. Seabed Environments and Shallow Geology of the Vlaming Sub-Basin, Western Australia - Marine data for the Investigation of the Geological Storage of CO2. GA0334 Post-Survey Report. Geoscience Australia, Record 2013/09. A preliminary interpretation of seabed data is provided in: GEOCAT 78846. Nicholas, W. A., Howard, F., Carroll, A., Siwabessy, J., Tran, M., Picard, K., Przeslawski, R. and Radke, L. 2014. Seabed Environments and shallow sub-surface geology of the Vlaming Sub-basin, offshore Perth Basin: summary report on observed and potential seepage, and habitats. Geoscience Australia, Record 2014/XXX. Information on the broader study, evaluating the Vlaming Sub-basin CO2 storage potential and providing details of the suitable storage sites, is available in: GEOCAT 79332. Borissova, I, Lech, M.E., Jorgensen, D.C, Southby, C., Wang, L., Bernardel, G., Nicholas, T., Lescinsky, D.L. and Johnston, S. An integrated study of the CO2 storage potential in the offshore Vlaming Sub-basin. Geoscience Australia, Record 2014/XXX.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises sediment oxygen demand measurments from seabed sediments.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises %carbonate and specific surface area of seabed sediments.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to high-resolution imagery taken of piston cores. A total of 20 piston cores collected in water depths between 154-445 m on the continental shelf, were imaged using the Geotek GEOSCAN IV line scan camera. Each core section was imaged at 200 lines per cm, corresponding to a 50 micron pixel size, to produce a single JPG image for each section. For more information on how the piston cores were collected please refer to the post-survey report (follow link at right), or for more information on the MSCL-S please refer to the manual, (follow link at right).

  • Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises sidescan grids.

  • This dataset contains seascape classification layer derived from bathymetry and backscatter, and their derivative from seabed mapping surveys in Darwin Harbour. The survey was undertaken during the period 24 June to 20 August 2011 by iXSurvey Australia Pty Ltd for the Department of Natural Resources, Environment, The Arts and Sport (NRETAS) in collaboration with Geoscience Australia (GA), the Darwin Port Corporation (DPC) and the Australian Institute of Marine Science (AIMS) using GA's Kongsberg EM3002D multibeam sonar system and DPC's vessel Matthew Flinders. The survey obtained detailed bathymetric map of Darwin Harbour. Refer to the GA record ' Mapping and Classification of Darwin Harbour Seabed' for further information on processing techniques applied (GeoCat: 79212; GA Record: 2015/xx)