backscatter
Type of resources
Keywords
Publication year
Service types
Topics
-
The Australian Maritime Jurisdiction of approximately 7,000,000 km2 has, at most, 25% of its seabed surveyed at high resolution. Since September 2001, under Commonwealth Policy on Spatial Data Access and Pricing, Intergovernmental Committee on Spatial Data Access and Pricing, the co-custodian of the bathymetry data collected within the Australian Marine Jurisdiction has been assigned to Geoscience Australia (GA). GA thus hosts various formats of raw as well as processed bathymetry datasets from multiple sensors, including multibeam sonar systems. The quality between datasets varies, depending on the objectives of the survey. As of January 2013, the multibeam sonar bathymetric coverage held by GA was acquired by 48 vessels, 26 different multibeam sonar systems in 9 different frequencies between 12 and 455 kHz. Consequently, GA has to deal with a variety of survey standards, making the post-processing and merging not efficient. The objective of this document is thus to provide standards and guidance to GA personnel and contractors who conduct multibeam data acquisition and processing during marine surveys to maximise consistency and efficiency. This document provides the most critical steps to multibeam acquisition and a mandatory checklist and deliverables. Specific details and tips for processing using Caris HIPS & SIPS software and Kongsberg EM series data are also provided in the appendix.
-
This dataset contains seascape classification layer derived from bathymetry and backscatter, and their derivative from seabed mapping surveys in Darwin Harbour. The survey was undertaken during the period 24 June to 20 August 2011 by iXSurvey Australia Pty Ltd for the Department of Natural Resources, Environment, The Arts and Sport (NRETAS) in collaboration with Geoscience Australia (GA), the Darwin Port Corporation (DPC) and the Australian Institute of Marine Science (AIMS) using GA's Kongsberg EM3002D multibeam sonar system and DPC's vessel Matthew Flinders. The survey obtained detailed bathymetric map of Darwin Harbour. Refer to the GA record ' Mapping and Classification of Darwin Harbour Seabed' for further information on processing techniques applied (GeoCat: 79212; GA Record: 2015/xx)
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. The datasets contain 6 backscatter grids of the Jarvis Bay produced from the processed EM3002 and EM3002D backscatter data of the survey area using the CMST-GA MB Process. Please see the metadata for more information.
-
This dataset contains multibeam sonar backscatter data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).
-
This dataset contains probability of seabed hardness data (multibeam angular backscatter response derived product) from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11)
-
The effective management of Darwin Harbour in Northern Australia is dependent upon accurate spatial information of seabed habitats that is required by multiple stakeholders. To develop this information, a combination of spatially continuous multibeam data, and targeted video and sediment data were used to classify the seabed and generate habitat maps. These data were acquired during collaborative surveys between Geoscience Australia, the Northern Territory Department of Land Resource Management (DLRM), the Australian Institute of Marine Science and the Darwin Port Corporation. A seascape analysis was used to classify the seabed, incorporating information from multibeam data and underwater video characterisations. We used the Iterative Self Organising Unsupervised Classification technique to combine the information from five variables to form a single classification showing potentially different seabed habitats. The 'probability of hard seabed' (p-rock) variable was derived by comparing the angular backscatter response of known areas of hard seabed to all other angular backscatter responses. We found that six habitat classes were statistically optimal and related to a unique combination of seabed substrate, relief, bedform, presence of a sediment veneer and presence of epibenthic biota and rock/reef. This presentation focuses on methods used to produce a continuous map of the harbour showing the distribution of multiple habitat types. We demonstrate the value of acoustic data for the characterisation of the seabed substrate. The resultant maps are being used by the Northern Territory DLRM to inform ongoing management of Darwin Harbour, with additional mapping planned for offshore areas and adjacent harbours in the region.
-
<p>This resource contains multibeam sonar backscatter data for Outer Darwin Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government (Department of Land Resource Management) during the period from 28 May and 23 June 2015 on the RV Solander (survey SOL6187/GA0351). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: <p>1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; <p>2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and <p>3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises multibeam backscatter data. <p>A detailed account of the survey is provided in: <p>Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas, W.A., Potter, A., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2015. Outer Darwin Harbour Marine Survey 2015: GA0351/SOL6187 Post-survey report. Record 2016/008. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2016.008
-
This resource includes multibeam sonar backscatter data for Beagle Marine Park (Bass Strait) collected by Geoscience Australia (GA) and the Institute for Marine & Antarctic Studies (University of Tasmania; UTAS) during the period 17 – 26 June 2018 on the RV Bluefin. The survey was undertaken as a collaborative project funded through the National Environmental Science Program Marine Biodiversity Hub, with co-investment by GA and UTAS. The purpose of the project was to build baseline information for benthic habitats in the Beagle Marine Park that will support ongoing environmental monitoring within the South-east Marine Park Network as part of the 10-year management plan (2013-2023). Data acquisition for the project was completed during three separate voyages: Phase 1 - Seabed mapping by multibeam sonar; Phase 2 – Seabed imagery acquisition by Autonomous Underwater Vehicle, and sediment sampling; Phase 3 – Survey of demersal fish communities using Baited Remote Underwater Video (BRUVs). This dataset from Phase 1 comprises 11 backscatter grids derived from multibeam sonar data gridded at 1 m spatial resolution, covering a combined area of 364 km2. A detailed report on the survey is provided in: Falster, G., Monk, J., Carroll, A., Siwabessy, J., Deane, A., Picard, K., Dando, N., Hulls, J., Nichol, S., Barrett, N. 2019. Australian Marine Park Baseline and Monitoring Survey: Post Survey Report, Beagle Marine Park, South-east Marine Park Network. Report to the National Environmental Science Program, Marine Biodiversity Hub.
-
A seabed mapping survey over a series of carbonate banks, intervening channels and surrounding sediment plains on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf was completed under a Memorandum of Understanding between Geoscience Australia and the Australian Institute of Marine Sciences. The survey obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to establish the late-Quaternary evolution of the region and investigate relationships between the physical environment and associated biota for biodiversity prediction. The survey also permits the biodiversity of benthos of the Van Diemen Rise to be put into a biogeographic context of the Arafura-Timor Sea and wider northern Australian marine region. Four study areas were investigated across the outer to inner shelf. Multibeam sonar data provide 100 per cent coverage of the seabed for each study area and are supplemented with geological and biological samples collected from 63 stations. In a novel approach, geochemical data collected at the stations provide an assessment of sediment and water quality for surrogacy research. Oceanographic data collected at four stations on the Van Diemen Rise will provide an understanding of the wave, tide and ocean currents as well as insights into sediment transport. A total of 1,154 square kilometres of multibeam sonar data and 340 line-km of shallow (<100 mbsf) sub-bottom profiles were collected.
-
Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS062008) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wavegenerated currents. Subbottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other preexisting bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. lh_back_8m is a backscatter grid of the Lord Howe survey area produced from the processed EM300 backscatter data of the survey area using the CMST-GA MB Process.