From 1 - 10 / 292
  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Wallpolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Barr Creek - Gunbower study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • The use of airborne electromagnetics (AEM) for hydrogeological investigations often requires high resolution data. Optimisation of AEM data therefore requires careful consideration of AEM system suitability, calibration, validation and inversion methods. In the Broken Hill managed Aquifer Recharge (BHMAR) project, the helicopter-borne SkyTEM transient EM system was selected after forward modeling of system responses and assessment of test line data over potential targets. The survey involved acquisition of 31,834 line km of data over an area of 7,500 km2 of the River Darling Floodplain, and was acquired by two systems over a 9-week period.. Initial Fast Approximate Inversions (FAI) provided within 48 hours of acquisition were used to target 100 sonic and rotary mud holes for calibration and validation. A number of different (Laterally and Spatially Constrained) inversions of the AEM data were carried out, with refinements made as additional information on vertical and lateral constraints became available. Finally, a Wave Number Domain Approximate Inversion procedure with a 1D multi-layer model and constraints in 3D, was used to produce a 3D conductivity model. This inversion procedure only takes days to run, enabling the rapid trialing to select the most appropriate vertical and horizontal constraints. Comparison of borehole induction logs with adjacent AEM fiduciary points confirms high confidence levels in the final inversion. Using this approach has produced quantitative estimates of the 3D conductivity structure that provide a reliable platform for identifying new groundwater resources and a range of MAR options, and developing new geological and hydrogeological conceptual models. Integration of the AEM data with borehole lithology, textural, mineralogical, groundwater and pore fluid hydrochemical and borehole NMR data has enabled maps of hydrostratigraphy, hydraulic conductivity, groundwater salinity, salt store and neotectonics to be produced.

  • Phase 1 report (Exposure/Impact Analysis) for Assessment of Groundwater Vulnerability to Climate Change in the Pacific Islands Project.

  • Progress report for Milestone 8 of Palaeovalley Groundwater project. Report prepared by Geoscience Australia for delivery to National Water Commission.

  • In this study, 3D mapping using airborne electromagnetics (AEM) was used to site a monitoring bore network in the Darling River floodplain corridor. Pressure loggers were installed in over 40 bores to monitor groundwater levels primarily in the shallow unconfined Coonambidgal Formation aquifer, deeper (semi)confined Calivil Formation and confined Renmark Group aquifers. In 2010-11, the network provided the opportunity to monitor the groundwater response to flooding of the Darling River and the replenishment of the Menindee Lakes storages, following a period of prolonged drought. In this event, the Darling River at Menindee (Weir 32) rose from 1.59m in October 2010 and peaked at 7.16m in March 2011. A synchronous rise in groundwater levels varying between 0.5-3.4m was observed in the shallow unconfined aquifer near the river. Shallow groundwater levels also declined following the flood peak. Near-river groundwater levels in the Calivil aquifer rose between 0.2-1.3m and also by 4.0 m at a site near Lake Menindee. The latter confirms lake leakage into the aquifer at this particular site, as previously inferred by the AEM data. There was also a pressure response of 0.1-0.9m evident in certain Renmark aquifer bores near the river. The monitoring confirms the importance of episodic flood events to the recharge of the alluvial aquifers, as supported by groundwater chemistry and stable isotope data. Although some of the confined aquifer response may relate to transient hydraulic loading associated with the flood, the inference is that in places there is a degree of hydraulic connectivity between the aquifers.

  • Submission to the Parliamentary Joint Committee on the Australian Capital Territory concerning the inquiry into long-term collection and disposal techniques for Canberra city waste. In Canberra, solid waste is disposed of in open dumps and sanitary landfill sites. A major environmental problem resulting from such practice is the pollution of groundwater by leachate, and the monitoring of groundwater pollution is an essential part of landfill management that must be continued long after a site is closed. The selection of landfill sites depends on the physical constraints of geology and hydrogeology, but planners do not always sufficiently consider the physical constraints in the selection of landfill sites. The success of a landfill site depends mainly on site selection,and must be supported by good site management techniques and groundwater-pollution monitoring procedures. In many communities, public authorities maintain good land-fill practice by setting high standards for landfill operators, and by controlling the site through regulations and the supervision of monitoring procedures.

  • This report covers the period during which a joint BMR-BRGM team prepared and started the computer based simulation of the Great Artesian Basin. Geological and hydrologic data were first collected from Federal and State authorities and then processed either manually or automatically. Processed data were then used to prepare input and calibration documents, including geological documents (geometry of system) and hydrologic documents (potentiometry). The first run of the mathematical model was obtained for the initial steady-state, and results appeared very encouraging.