From 1 - 10 / 29
  • This is the Acreage Release Marine Environmental Data compiled web service to be updated each year with acreage release. It contains the following publicly available datasets, for the 2016 Acreage Release - Marine Survey Towed-video Transects, Marine Sediments Database Samples, Australian Seascapes, Seabed Mud Content on the Northwest Shelf, Seabed Sand Content of the Northwest Shelf and Seabed Gravel Content of the Northwest Shelf.

  • Recent national and state assessments have concluded that sedimentary formations that underlie or are within the Great Artesian Basin (GAB) may be suitable for the storage of greenhouse gases. These same formations contain methane and naturally generated carbon dioxide that has been trapped for millions of years. The Queensland government has released exploration permits for Greenhouse Gas Storage in the Bowen and Surat basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are no hydrochemical studies of such deeper aquifers in the prospective storage areas. Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ), Queensland Department of Mines and Energy, worked collaboratively under the National Geoscience Agreement (NGA) to characterise the regional hydrochemistry of the Denison Trough and Surat Basin and trialled different groundwater monitoring strategies. The output from this Project constitutes part of a regional baseline reference set for future site-specific and semi-regional monitoring and verification programmes conducted by geological storage proponents. The dataset provides a reference of hydrochemistry for future competing resource users.

  • The Geological and Bioregional Assessments (GBA) Program is a series of independent scientific studies undertaken by Geoscience Australia and the CSIRO, supported by the Bureau of Meteorology, and managed by the Department of Agriculture, Water and the Environment. The Program consists of three stages across three regions with potential to deliver gas to the East Coast Gas Market. Stage 1 was a rapid regional prioritisation conducted by Geoscience Australia, to identify those sedimentary basins with the greatest potential to deliver shale and/or tight gas to the East Coast Gas Market within the next five to ten years. This prioritisation process assessed 27 onshore eastern and northern Australian basins with shale and/or tight gas potential. Further screening reduced this to a shortlist of nine basins where exploration was underway. The shortlisted basins were ranked on a number of criteria. The Cooper Basin, the Beetaloo Sub-basin and the Isa Superbasin were selected for more detailed assessment. Stage 2 of the program involved establishing a baseline understanding of the identified regions. Geoscience Australia produced regional geological evaluations and conceptualisations that inform the assessment of shale and/or tight gas prospectivity, ground- and surface-water impacts, and hydraulic fracturing models. Geoscience Australia’s relative prospectivity assessments provide an indication of where viable petroleum plays are most likely to be present. These data indicate areal and stratigraphic constraints that support the program’s further work in Stage 3, on understanding likely development scenarios, impact assessments, and causal pathways. <b>Citation:</b> Hall Lisa S., Orr Meredith L., Lech Megan E., Lewis Steven, Bailey Adam H. E., Owens Ryan, Bradshaw Barry E., Bernardel George (2021) Geological and Bioregional Assessments: assessing the prospectivity for tight, shale and deep-coal resources in the Cooper Basin, Beetaloo Subbasin and Isa Superbasin. <i>The APPEA Journal</i><b> 61</b>, 477-484. https://doi.org/10.1071/AJ20035

  • The Clarence-Moreton and the Surat basins in Queensland and northern New South Wales contain the coal-bearing sedimentary sequences of the Jurassic Walloon Coal Measures, composed of up to approximately 600 m of mudstone, siltstone, sandstone and coal. In recent years, the intensification of exploration for coal seam gas (CSG) resources within both basins has led to concerns that the depressurisation associated with future resource development may cause adverse impacts on water resources in adjacent aquifers. In order to identify the most suitable tracers to study groundwater recharge and flow patterns within the Walloon Coal Measures and their degree of connectivity with over- or underlying formations, samples were collected from the Walloon Coal Measures and adjacent aquifers in the northern Clarence-Moreton Basin and eastern Surat Basin, and analysed for a wide range of hydrochemical and isotopic parameters. Parameters that were analysed include major ion chemistry, -13C-DIC, -18O, 87Sr/86Sr, Rare Earth Elements (REE), 14C, -2H and -13C of CH4 as well as concentrations of dissolved gases (including methane). Dissolved methane concentrations range from below the reporting limit (10 µg/L) to approximately 50 mg/L in groundwaters of the Walloon Coal Measures. However, the high degree of spatial variability of methane concentrations highlights the general complexity of recharge and groundwater flow processes, especially in the Laidley Sub-Basin of the Clarence-Moreton Basin, where numerous volcanic cones penetrate the Walloon Coal Measures and may form pathways for preferential recharge to the Walloon Coal Measures. Interestingly, dissolved methane was also measured in other sedimentary bedrock units and in alluvial aquifers in areas where no previous CSG exploration or development has occurred, highlighting the natural presence of methane in different aquifers. Radiocarbon ages of Walloon Coal Measure groundwaters are also highly variable, ranging from approximately 2000 yrs BP to >40000 yrs BP. While groundwaters sampled in close proximity to the east and west of the Great Dividing Range are mostly young, suggesting that recharge to the Walloon Coal Measures through the basalts of the Great Dividing Range occurs here, there are otherwise no clearly discernable spatial patterns and no strong correlations with depth or distance along inferred flow paths in the Clarence-Moreton Basin. In contrast to this strong spatial variability of methane concentrations and groundwater ages, REE and 87Sr/86Sr isotope ratios of Walloon Coal Measures groundwaters appear to be very uniform and clearly distinct from groundwaters contained in other bedrock units. This difference is attributed to the different source material of the Walloon Coal Measures (mostly basalts in comparison to other bedrock units which are mostly composed of mineralogical more variable Paleozoic basement rocks of the New England Orogen). This study suggests that REE and 87Sr/86Sr ratios may be a suitable tracer to study hydraulic connectivity of the Walloon Coal Measures with over- or underlying aquifers. In addition, this study also highlights the need to conduct detailed water chemistry and isotope baseline studies prior to the development of coal seam gas resources in order to differentiate between natural background values of methane and potential impacts of coal seam gas development.

  • Bores sunk at Cremorne in 1891 struck coal at approximately 2802 feet. A company was formed to work the coal, but was refused permission to operate at Cremorne. A site at Balmain was secured, and the Birthday Shaft was sunk to a depth of 2,937 feet between 1897 and 1902. This report provides an overview of the occurrence of natural gas and workings for the period 1897 to 1948. Gas yields, commercial production, leakage problems, and the use of testing to determine the behaviour of gas in the mine are the key subjects that are addressed in this report.

  • The Browse Basin is located offshore on Australia's North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate and where oil reserves are typically small. The assessment of a basin's oil potential traditionally focuses on the presence or absence of oil-prone source rocks. However, light oil can be found in basins where source rocks are gas-prone and the primary hydrocarbon type is gas-condensate. Oil rims form whenever such fluids migrate into reservoirs at pressures less than their dew point (saturation) pressure. By combining petroleum systems analysis with geochemical studies of source rocks and fluids (gases and liquids), four Mesozoic petroleum systems have been identified in the basin. This study applies petroleum systems analysis to understand the source of fluids and their phase behaviour in the Browse Basin. Source rock richness, thickness and quality are mapped from well control. Petroleum systems modelling that integrates source rock property maps, basin-specific kinetics, 1D burial history models and regional 3D surfaces, provides new insights into source rock maturity, generation and expelled fluid composition. The principal source rocks are Early-Middle Jurassic fluvio-deltaic coaly shales and shales within the J10-J20 supersequences (Plover Formation), Middle-Late Jurassic to Early Cretaceous sub-oxic marine shales within the J30-K10 supersequences (Vulcan and Montara formations) and K20-K30 supersequences (Echuca Shoals Formation). All of these source rocks contain significant contributions of land-plant derived organic matter and within the Caswell Sub-basin have reached sufficient maturities to have transformed most of the kerogen into hydrocarbons, with the majority of expulsion occurring from the Late Cretaceous until present.

  • The National Onshore Gas Pipelines Dataset represents the spatial locations of pipelines for the transmission of natural gas within mainland Australia complimented with feature attribution.

  • Animation demonstrating how fraccing is used in Coal Seam Gas (CSG) extraction.

  • A major concern for regulators and the public with geologically storage of gas is the potential for the migration of gas (e.g. CO2) via a leaky fault or well into potable groundwater supplies. Given sufficient CO2, an immediate effect on groundwater would be a decrease in pH which could lead to accelerated weathering, an increase in alkalinity and the release of major and minor ions. Laboratory and core studies have demonstrated that on contact with CO2 heavy metals can be released under low pH and high CO2 conditions (particularly Pd, Ni and Cr). There is also a concern that trace organic contaminants could be mobilised due to the high solubility of many organics in supercritical CO2. These scenarios could potentially occur under a high CO2 leakage event but a small leak might be barely perceptible yet could provide an important early warning for a subsequent and more substantial impact. Different approaches are required for the detection and quantification of these low level leaks and are the subject of this paper. A 3 year groundwater survey was recently completed in the Surat Basin, which forms part of the Triassic-Cretaceous, Great Artesian Basin (GAB) aquifer sequence. In addition to a comprehensive water and isotopic analysis of samples from groundwater wells, gases were collected from groundwater samples and analysed for composition, '13CCO2, '13CCH4 and '2HCH4. Methane is prevalent in the major aquifers in the Surat Basin (e.g. Mooga, Gubbermunda and Hutton sandstones) and is invariably associated with a bacterial (methanogenic) carbonate reduction source, evident from its isotopic signature ('13CCH4 ~ -70', '2HCH4 ~ 220'). In addition to methane and low levels of CO2, trace levels of ethane are often detected.

  • The study provides a comprehensive analysis of the natural gases from the Bonaparte, Browse, Carnarvon and Perth basins (in 4 modules). Geochemical analyses for the molecular and carbon isotope composition were performed on 96 gases and associated liquids, and these data are interpreted in a geological context. Additional non-exclusive data from the AGSO database have been used for correlation/interpretation purposes. The study addresses factors influencing the composition of gaseous and other light hydrocarbons in natural gas (and associated oil accumulations) including; - primary source and maturity controls, - secondary alteration processes, e.g. migration fractionation, water washing, biodegradation, and - multiple charge histories, including deep dry gas inputs.