Geomorphology
Type of resources
Keywords
Publication year
Service types
Topics
-
A high-resolution multibeam echosounder (MBES) dataset covering over 279,000 km2 was acquired in the southeastern Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370) that disappeared on 8 March 2014. The data provided an essential geospatial framework for the search and is the first large-scale coverage of MBES data in this region. Here we report on geomorphic analyses of the new MBES data, including a comparison with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite altimetry data, and the insights the new data provide into geological processes that have formed and are currently shaping this remote deepsea area. Our comparison between the new MBES bathymetric model and the latest global topographic/bathymetric model (SRTM15_plus) reveals that 62% of the satellite-derived data points for the study area are comparable with MBES measurements within the estimated vertical uncertainty of the SRTM15_plus model (± 100 m). However, > 38% of the SRTM15_plus depth estimates disagree with the MBES data by > 100 m, in places by up to 1900 m. The new MBES data show that abyssal plains and basins in the study area are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting more of these features than previously estimated for the broader region. This is important considering the ecological significance of high-relief structures on the seabed, such as hosting high levels of biodiversity. Analyses of the new data also enabled sea knolls, fans, valleys, canyons, troughs, and holes to be identified, doubling the number of discrete features mapped. Importantly, mapping the study area using MBES data improves our understanding of the geological evolution of the region and reveals a range of modern sedimentary processes. For example, a large series of ridges extending over approximately 20% of the mapped area, in places capped by sea knolls, highlight the preserved seafloor spreading fabric and provide valuable insights into Southeast Indian Ridge seafloor spreading processes, especially volcanism. Rifting is also recorded along the Broken Ridge – Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock outcrops discernible down to 2400 m water depth. Modern ocean floor sedimentary processes are documented by sediment mass transport features, especially along the northern margin of Broken Ridge, and in pockmarks (the finest-scale features mapped), which are numerous south of Diamantina Trench and appear to record gas and/or fluid discharge from underlying marine sediments. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the vast areas of the ocean that have not been mapped with MBES. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity. <b>Citation:</b> Kim Picard, Brendan P. Brooke, Peter T. Harris, Paulus J.W. Siwabessy, Millard F. Coffin, Maggie Tran, Michele Spinoccia, Jonathan Weales, Miles Macmillan-Lawler, Jonah Sullivan, Malaysia Airlines flight MH370 search data reveal geomorphology and seafloor processes in the remote southeast Indian Ocean, <i>Marine Geology</i>, Volume 395, 2018, Pages 301-319, ISSN 0025-3227, https://doi.org/10.1016/j.margeo.2017.10.014.
-
The service contains the Australian Coastal Geomorphology Smartline, used to support a national coastal risk assessment. The 'Smartline' is a representation of the geomorphic features located within 500m of the shoreline, denoted by the high water mark. The service includes geomorphology themes and stability classes.
-
This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.
-
Publicly available bathymetry and geophysical data has been used to map geomorphic features of the Antarctic continental margin and adjoining ocean basins at scales of 1:1-2 million. The key bathymetry datasets used were GEBCO08 and ETOPO2 satellite bathymetry (Smith & Sandwell 1997), in addition to seismic lines in key areas. Twenty-seven geomorphic units were identified based on interpretation of the seafloor bathymetry with polygons digitised by hand in ArcGIS. Seafloor features were classified largely based on the International Hydrographic Organisation (2001) classification of undersea features, and expanded to include additional features, including those likely to have specific substrate types and influence on oceanography. This approach improves the technique as a predictor of physical conditions that may influence seafloor communities. The geomorphic map has been used for developing a benthic bioregionalisation and for developing a representative system of Marine Protected Areas for East Antarctica. Slight modifications have been made since original publication in O'Brien et al. 2009 and Post et al. 2014. These include: - updating of some feature names; - combining "wave affected banks" with "shelf banks" - Combining "coastal terrance" with "island coastal terrane" as "Coastal/Shelf Terrane" - replacing canyon vectors with polygons by using a buffer around the vectors Further details of the original mapping can be found in: O'Brien, P.E., Post, A.L., Romeyn, R., 2009. Antarctic-wide geomorphology as an aid to habitat mapping and locating Vulnerable Marine Ecosystems, Commission for the Conservation of Antarctic Marine Living Resources Vulnerable Marine Ecosystems Workshop, Paper WS-VME-09/10. CCAMLR, La Jolla, California, USA. Post, A.L., Meijers, A.J.S., Fraser, A.D., Meiners, K.M., Ayers, J., Bindoff, N.L., Griffiths, H.J., Van de Putte, A.P., O'Brien, P.E., Swadling, K.M., Raymond, B., 2014. Chapter 14. Environmental Setting, In: De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., d'Udekem d'Acoz, C., et al. (Eds.), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 46-64.
-
<div>The development of Australia’s offshore renewable energy (ORE) industry can learn and benefit from decades of international experience and research. However, local knowledge of our unique receiving environment and the organisms that depend on it is critical for ensuring development minimises impacts on marine ecosystems. Long-term monitoring and adaptive management strategies that consistently evaluate and address environmental impacts of offshore wind farms will be necessary throughout the operational lifespan of ORE. This collaborative National Environmental Science Program project established an inventory of environmental and cultural data and best practice monitoring standards to support regulatory decision-making for ORE development for current proposed and declared areas: Hunter, Gippsland and Bass Strait, Illawarra, Southern Ocean and south-west Western Australia. We provide detail on 1) potential impacts of installation, operation, and decommissioning; 2) best practice standards for monitoring; 3) cultural and environmental values of Indigenous communities with links to development areas; 4) seabed geomorphology and habitat characterisation; potential interactions with oceanography and 5) the seasonality and distribution of interacting species. The inventory, which is available to the Government, proponents, and researchers, will improve the effectiveness of future research for the sustainable development of ORE in Australia. Presented at the 2024 AMSA-NZMSS Conference Hobart Tas
-
<div>Australia’s vast marine estate offers high-quality offshore wind resources that have the potential to help produce the renewable energy that Australia will need to achieve its net zero emissions targets. Mature offshore renewable industries in Europe have demonstrated that marine geoscience is critical for supporting the sustainable development, installation, operation and decommissioning of offshore wind farms. Geoscience information is used to design targeted seabed surveys and identify areas suitable for offshore infrastructure, thereby reducing uncertainty and investment risk. These data also provide important regional context for environmental impact assessments and informs evidence-based decisions consistent with government policies and regulations. Effective geomorphic characterisation of the seabed requires a standardised, multi-scalar and collaborative approach to produce definitive geomorphology maps that can support these applications. These maps synthesise interpretations of bathymetry, shallow geology, sedimentology and ecology data, to illustrate the distribution and diversity of seabed features, compositions and processes, including sediment dynamics and seabed stability. We present mapped examples demonstrating the utility of a nationally consistent seabed geomorphology mapping scheme (developed in collaboration with European agencies), for application to a broad range of geographic settings and policy-needs, including the sustainable development of offshore renewable energy in Australia. Presented at the 2024 AMSA-NZMSS Conference Hobart Tas
-
<div>The Geological and Bioregional Assessment Program collected an extensive LiDAR elevation dataset focused on Cooper Creek Floodplain in Queensland and South Australia. The LiDAR data was collected by Fugro Australia Ltd in two aerial surveys in 2019 covering a total survey area of 31,780 km2 across the Cooper Creek Floodplain, and the Thomson and Barcoo river systems (GBA 2021). The data was acquired at an average density of 1 point per square metre, processed and compiled as LiDAR Classified Data in LAS 1 km tiles and 1 m grid DEM in ESRI ascii 1 km tiles. As part of the study of the <em>Cenozoic geology, hydrogeology and groundwater systems of Kati Thanda - Lake Eyre Basin</em> for the National Groundwater Systems project (Exploring for the Future program) (see Evans et al. 2024) these 1 km tiles were mosaiced into a seamless grid and resampled to 10 m cell resolution raster images for ease of visualisation and usability across GIS applications (refer to lineage field of this metadata record for the complete reference details of publications cited in this abstract).</div>
-
<div>Australia has a vast marine jurisdiction and a thriving ocean economy, but our ocean faces increasingly complex pressures. Advancing our ocean knowledge is key to unlocking a sustainable ocean future. Seabed maps are an essential source of baseline information to inform the conservation, restoration, sustainable use, and management of our oceans.</div><div><br></div><div>The goal is to map the shape of Australia’s seabed in sufficient detail to inform the sustainable management and use of marine resources. But knowing how much of the seabed is “mapped” and what is “sufficient” are far from simple. Seabed (bathymetry) data is available from multiple sources, is collected using different techniques of variable quality, is stored in disparate formats and locations, and what is considered sufficient varies depending on the application. As a result, Australia’s progress in mapping its seabed cannot be determined simply from data coverage.</div><div><br></div><div>This fact sheet defines the term “mapped in sufficient detail”, provides an up-to-date assessment of the proportion of seabed mapped in Australia, and lays the foundation for reporting future progress.</div><div><br></div><div>As of August 2024, using this methodology, 35.2% of Australia’s marine jurisdiction has been mapped in sufficient detail, with more of the seabed mapped around mainland Australia and external territories than in the Australian Antarctic Territory’s Exclusive Economic Zone (EEZ).</div><div><br></div><div>Geoscience Australia will continue working with the seabed mapping community to include new and legacy data in the coverage dataset and will continue to track and report on Australia’s progress in mapping the seabed across its marine jurisdiction.</div>
-
This report presents key results from hydrogeological investigations in the Tennant Creek region, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The EFTF Southern Stuart Corridor (SSC) Project area is located in the Northern Territory and extends in a north–south corridor from Tennant Creek to Alice Springs, encompassing four water control districts and a number of remote communities. Water allocation planning and agricultural expansion in the SSC is limited by a paucity of data and information regarding the volume and extent of groundwater resources and groundwater systems more generally. Geoscience Australia, in partnership with the Northern Territory Department of Environment and Natural Resources and Power and Water Corporation, undertook an extensive program of hydrogeological investigations in the SSC Project area between 2017 and 2019. Data acquisition included; helicopter airborne electromagnetic (AEM) and magnetic data; water bore drilling; ground-based and downhole geophysical data for mapping water content and defining geological formations; hydrochemistry for characterising groundwater systems; and landscape assessment to identify potential managed aquifer recharge (MAR) targets. This report focuses on the Tennant Creek region—part of the Barkly region of the Northern Territory. Investigations in this region utilised existing geological and geophysical data and information, which were applied in the interpretation and integration of AEM and ground-based geophysical data, as well as existing and newly acquired groundwater hydrochemical and isotope data. The AEM and borehole lithological data reveal the highly weathered (decomposed) nature of the geology, which is reflected in the hydrochemistry. These data offer revised parameters, such as lower bulk electrical conductivity values and increased potential aquifer volumes, for improved modelling of local groundwater systems. In many instances the groundwater is shown to be young and of relatively good quality (salinity generally <1000 mg/L total dissolved solids), with evidence that parts of the system are rapidly recharged by large rainfall events. The exception to this is in the Wiso Basin to the west of Tennant Creek. Here lower quality groundwater occurs extensively in the upper 100 m below ground level, but this may sit above potentially potable groundwater and that possibility should be investigated further. Faults are demonstrated to have significantly influenced the occurrence and distribution of weathered rocks and of groundwater, with implications for groundwater storage and movement. Previously unrecognised faults in the existing borefield areas should be investigated for their potential role in compartmentalising groundwater. Additionally a previously unrecognised sub-basin proximal to Tennant Creek may have potential as a groundwater resource or a target for MAR. This study has improved understanding of the quantity and character of existing groundwater resources in the region and identified a managed aquifer recharge target and potential new groundwater resources. The outcomes of the study support informed water management decisions and improved water security for communities; providing a basis for future economic investment and protection of environmental and cultural values in the Tennant Creek and broader Barkly region. Data and information related to the project are summarised in the conclusions of this report and are accessible via the EFTF portal (https://portal.ga.gov.au/).
-
Remotely sensed data and updated DEM and radiometric datasets, combined with existing surface material and landform mapping were used to map regolith landform units for the Ti Tree, Western Davenport and Tennant Creek regions of the SSC project. This report describes the methods used and outlines the new mapping.